摘要:
A direct liquid jet impingement module and associated method of providing such used in cooling of electronic components housed in an electronic package is provided. The module comprises a frame having an orifice to be placed over to-be-cooled components. A manifold is then disposed over the frame, such that the manifold opening is aligned with the frame orifice to ultimately enable fluid impingement on the to-be-cooled components. The manifold is formed to receive an inlet for the flow of coolants and an outlet fitting for removal of dissipated heat. A jet orifice plate is also provided inside the manifold opening, aligned with the frame orifice for directing fluid coolant flow over to-be-cooled components.
摘要:
Cooling apparatuses and methods are provided for cooling an assembly including a substrate supporting multiple electronics components. The cooling apparatus includes: multiple discrete cold plates, each having a coolant inlet, a coolant outlet and at least one coolant chamber disposed therebetween; and multiple coolant-carrying tubes, each tube extending from a respective cold plate and being in fluid communication with the coolant inlet or outlet of the cold plate. An enclosure is provided having a perimeter region which engages the substrate to form a cavity with the electronics components and cold plates being disposed within the cavity. The enclosure is configured with multiple bores, each bore being sized and located to receive a respective coolant-carrying tube of the tubes extending from the cold plates. Further, the enclosure is configured with a manifold in fluid communication with the tubes for distributing coolant in parallel to the cold plates.
摘要:
Apparatus and method are provided for facilitating cooling of an electronics rack employing an air delivery structure coupled to the electronics rack. The air delivery structure delivers air flow at a location external to the electronics rack and in a direction to facilitate mixing thereof with re-circulating exhausted inlet-to-outlet air flow from the air outlet side of the electronics rack to the air inlet side thereof. The delivered air flow is cooler than the re-circulating exhausted inlet-to-outlet air flow and when mixed with the re-circulating air flow facilitates lowering air inlet temperature at a portion of the air inlet side of the electronics rack, thereby enhancing cooling of the electronics rack.
摘要:
A cooling apparatus and method of fabrication are provided for facilitating removal of heat from a heat generating electronic device. The cooling apparatus includes a plurality of thermally conductive fins coupled to and projecting away from a surface to be cooled. The fins facilitate transfer of heat from the surface to be cooled. The apparatus further includes an integrated manifold having a plurality of inlet orifices for injecting coolant onto the surface to be cooled, and a plurality of outlet openings for exhausting coolant after impinging on the surface to be cooled. The inlet orifices and the outlet openings are interspersed in a common surface of the integrated manifold. Further, the integrated manifold and the surface to be cooled are disposed with the common surface of the manifold and the surface to be cooled in spaced, opposing relation, and with the plurality of thermally conductive fins disposed therebetween.
摘要:
An isolation valve assembly, a coolant connect/disconnect assembly, a cooled multi-blade electronics center, and methods of fabrication thereof are provided employing an isolation valve and actuation mechanism. The isolation valve is disposed within at least one of a coolant supply or return line providing liquid coolant to the electronics subsystem. The actuation member is coupled to the isolation valve to automatically translate a linear motion, resulting from insertion of the electronics subsystem into the operational position within the electronics housing, into a rotational motion to open the isolation valve and allow coolant to pass. The actuation mechanism, which operates to automatically close the isolation valve when the liquid cooled electronics subsystem is withdrawn from the operational position, can be employed in combination with a compression valve coupling, with one fitting of the compression valve coupling being disposed serially in fluid communication with the isolation valve.
摘要:
A thermally conductive composite interface and methods of fabrication are provided for coupling a cooling assembly and at least one electronic device. The interface includes a plurality of thermally conductive contacts for mechanically coupling the cooling assembly and electronic device, and an adhesive material at least partially surrounding the thermally conductive contacts. The thermally conductive contacts are made of a first material, which has a first thermal conductivity, and the adhesive material is a second material, which has a second thermal conductivity, with the first thermal conductivity being greater than the second thermal conductivity. The adhesive material rigidly bonds the cooling assembly and the at least one electronic device together, thereby relieving strain on the plurality of thermally conductive contacts resulting from a coefficient of thermal expansion mismatch between the cooling assembly and the at least one electronic device.
摘要:
An electronic device cooling assembly and fabrication method are provided which include a manifold with an orifice for injecting a cooling liquid onto a surface to be cooled, and an elastic pin support material with an opening aligned to the orifice of the manifold. Multiple thermally conductive pins are mounted within the support material, extending therefrom, and are sized to physically contact the surface to be cooled. The support material has a thickness and compliance which facilitates thermal interfacing of the pins to the surface by allowing second ends thereof to move vertically and tilt. The second end of each pin has a planar surface which is normal to an axis of the pin, and the support material facilitates the planar surfaces of the second pin ends establishing planar contact with the surface to be cooled, notwithstanding that the surface may be other than planar.
摘要:
A heat transfer apparatus and method of fabrication are provided for facilitating removal of heat from a heat generating electronic device. The heat transfer apparatus includes a thermally conductive base having a main surface, and a plurality of thermally conductive fins extending from the main surface. The thermally conductive fins are disposed to facilitate transfer of heat from the thermally conductive base, which can be a portion of the electronic device or a separate structure coupled to the electronic device. At least some conductive fins are composite structures, each including a first material coated with a second material, wherein the first material has a first thermal conductivity and the second material a second thermal conductivity. In one implementation, the thermally conductive fins are wire-bonded pin-fins, each being a discrete, looped pin-fin separately wire-bonded to the main surface and spaced less than 300 micrometers apart in an array.
摘要:
A cooling apparatus and method of fabrication are provided for facilitating removal of heat from a heat generating electronic device. The cooling apparatus includes a thermally conductive base having a substantially planar main surface, and a plurality of thermally conductive pin fins wire-bonded to the main surface of the thermally conductive base and disposed to facilitate the transfer of heat from the thermally conductive base. The thermally conductive base can be a portion of the electronic device to be cooled or a separate structure coupled to the electronic device to be cooled. If a separate structure, the thermally conductive base has a coefficient of thermal expansion within a defined range of a coefficient of thermal expansion of the electronic device. In one implementation, the wire-bonded pin fins are discrete, looped pin fins separately wire-bonded to the main surface and spaced less than 300 micrometers apart in an array.
摘要:
A coolant flow drive apparatus is provided for facilitating removal of heat from a cooling structure coupled to a heat generating electronics component. The coolant flow drive apparatus includes a turbine in fluid communication with a primary coolant flowing within a primary coolant flow loop, and a pump in fluid communication with a secondary coolant within a secondary coolant flow path. The secondary fluid flow path is separate from the primary coolant flow path. The flow drive apparatus further includes a magnetic coupling between the turbine and the pump, wherein the turbine drives the pump through the magnetic coupling to pump secondary coolant through the secondary coolant flow path.