摘要:
A light-emitting device comprises a substrate, an epitaxial structure formed on the substrate including a first semiconductor layer, a second semiconductor layer, and a light-emitting layer formed between the first semiconductor layer and the second semiconductor layer. A trench is formed in the epitaxial structure to expose a part of side surface of the epitaxial structure and a part of surface of the first semiconductor layer, so that a first conductive structure is formed on the part of surface of the first semiconductor layer in the trench, and a second conductive structure is formed on the second semiconductor layer. The first conductive structure includes a first electrode and a first pad electrically contacted with each other. The second conductive structure includes a second electrode and a second pad electrically contacted with each other. Furthermore, the area of at least one of the first pad and the second pad is between 1.5×104 μm2 and 6.2×104 μm2.
摘要:
A light-emitting device comprises a substrate, an epitaxial structure formed on the substrate including a first semiconductor layer, a second semiconductor layer, and a light-emitting layer formed between the first semiconductor layer and the second semiconductor layer. A trench is formed in the epitaxial structure to expose a part of side surface of the epitaxial structure and a part of surface of the first semiconductor layer, so that a first conductive structure is formed on the part of surface of the first semiconductor layer in the trench, and a second conductive structure is formed on the second semiconductor layer. The first conductive structure includes a first electrode and a first pad electrically contacted with each other. The second conductive structure includes a second electrode and a second pad electrically contacted with each other. Furthermore, the area of at least one of the first pad and the second pad is between 1.5×104 μm2 and 6.2×104 μm2.
摘要:
An LED array having N light-emitting diode units (N≧3) comprises a permanent substrate, a bonding layer on the permanent substrate, a second conductive layer on the bonding layer, a second isolation layer on the second conductive layer, a crossover metal layer on the second isolation layer, a first isolation layer on the crossover metal layer, a conductive connecting layer on the first isolation layer, an epitaxial structure on the conductive connecting layer, and a first electrode layer on the epitaxial structure. The light-emitting diode units are electrically connected with each other by the crossover metal layer.
摘要:
An LED array having N light-emitting diode units (N≧3) comprises a permanent substrate, a bonding layer on the permanent substrate, a second conductive layer on the bonding layer, a second isolation layer on the second conductive layer, a crossover metal layer on the second isolation layer, a first isolation layer on the crossover metal layer, a conductive connecting layer on the first isolation layer, an epitaxial structure on the conductive connecting layer, and a first electrode layer on the epitaxial structure. The light-emitting diode units are electrically connected with each other by the crossover metal layer.
摘要:
A light-emitting diode (LED) includes a plurality of reflective layers stacked over each other and each comprising a distributed Bragg reflector, a substrate, an N type semiconductor formed on the substrate, a light emitting layer formed on the N type semiconductor layer and a P type semiconductor formed on the light emitting layer. The stack of the reflective layers is formed under the substrate or the stack is formed between the substrate and the N type semiconductor layer. The reflective layers receive and reflect light incident at different angles thereby alleviating escape of light from the light emitting diode and enhancing overall brightness of the light emitting diode.
摘要:
A semiconductor light-emitting device having a thinned structure comprises a thinned structure formed between a semiconductor light-emitting structure and a carrier. The manufacturing method comprises the steps of forming a semiconductor light-emitting structure above a substrate; attaching the semiconductor light-emitting structure to a support; thinning the substrate to form a thinned structure; forming or attaching a carrier to the thinned substrate; and removing the support.
摘要:
A method for reconfiguring a mobility platform includes: enabling a mobile node to extract an advertisement signaling packet sent periodically by a network node, wherein the mobile node supports a plurality of client mobility management protocols, and the network node supports a plurality of network mobility management protocols; according to the advertisement signaling packet, enabling the mobile node to display at least one mobility management protocol that is mutually supported by the mobile and network nodes for viewing by a user; enabling the user to select one of the at least one mobility management protocol to serve as a new mobility management protocol to be mutually used by the mobile and network nodes; and enabling the mobile node to send a registration request packet to the network node.
摘要:
A light-emitting device includes a light-emitting stacked layer having an active layer, and a composite substrate located under the light-emitting stacked layer. The composite substrate includes a supportive substrate having a top surface and a bottom surface non-parallel to the active layer; a metal substrate located under the supportive substrate; and a reflective layer located between the supportive substrate and the metal substrate.
摘要:
A semiconductor light-emitting device having a thinned structure comprises a thinned structure formed between a semiconductor light-emitting structure and a carrier. The manufacturing method comprises the steps of forming a semiconductor light-emitting structure above a substrate; attaching the semiconductor light-emitting structure to a support; thinning the substrate to form a thinned structure; forming or attaching a carrier to the thinned substrate; and removing the support.
摘要:
A method and a reactor of plasma treating a wafer with high induction plasma density and high uniformity of reactive species were disclosed in this invention. The inductively coupled plasma reactor of the present invention includes a vacuum chamber having a dielectric ceiling thereof and a unique coil configuration atop on the dielectric ceiling, wherein the dielectric ceiling is designed to have a different height according to its shape, e.g., a planar, dish-shaped or hat-shaped dielectric ceiling, for coupling an RF power into the chamber to excite the plasma. The unique coil configuration contains plural helical coils which are arranged in series or in parallel to provide a high-density uniform ion plasma for a large wafer treatment.