摘要:
A lightly-doped drain (LDD) structure has conductive shield overlying the lightly-doped drain and source portions to collect and/or remove hot carriers which can otherwise cause instabilities such as gain degradation and threshold voltage shifts in short-channel MOS devices. The hot carriers eventually deteriorate the performance of the transistor to the point where the transistor provides insufficient performance. Thus, the lifetime of a transistor is affected by the degradation caused by the formation of hot carriers. The lifetime is increased by collecting the hot carriers in the conductive material over the lightly-doped source and drain.
摘要:
A process for forming n- and p-wells in a semiconductor substrate wherein each well has a shallow, highly-doped surface layer whose depth may be independently controlled. This high/low doping profile for a twin well CMOS process may be produced using only one mask level. The method provides high/low impurity profiles in each well to optimize the NMOS and PMOS active transistors; provides close NMOS to PMOS transistor spacing; avoids a channel-stop mask level and avoids a threshold adjustment/punchthrough mask level.
摘要:
Embodiments disclosed herein describe systems and methods for a hanging device including slides configured to align the hanging device at desired positions with the frame and on a wall. Embodiments may be configured to be aligned with a frame in both horizontal and vertical directions.
摘要:
Embodiments disclosed herein describe systems and methods for a hanging device including slides configured to align the hanging device at desired positions with the frame and on a wall. Embodiments may be configured to be aligned with a frame in both horizontal and vertical directions.
摘要:
A metal interconnect structure includes copper interface layers (24, 30) located between a refractory metal via plug (28), and first and second metal interconnect layers (16, 32). The copper interface layers (24, 30) are confined to the area of a via opening (22) in an insulating layer (20) overlying the first interconnect layer (16) and containing the via plug (28). The interface layers (24, 30) are subjected to an anneal to provide copper reservoirs (36, 37) in the interconnect layers (16, 32) adjacent to the interface layers (24, 30). The copper reservoirs (36, 37) continuously replenish copper depleted from the interface when an electric current is passed through the interconnect structure. A process includes the selective deposition of copper onto an exposed region (23) of the first metal interconnect layer (16), and onto the upper portion the via plug (28), followed by an anneal in forming gas to form the copper reservoirs (36, 37).
摘要:
A process of forming a conductive material layer in at least two steps by forming a conductive material layer from a plurality of thin layers of conductive material. The use of a two-step formation process for the conductive material layer permits process versatility in incorporating implantation steps and patterning steps between formation of the thin layers of conductive material. Direct transfer from dielectric layer formation to conductive material layer formation steps, and performing the intermediate process steps in the same piece of equipment as the thin conductive layer formation assists in adhesion of the thin layers to each other to form the total conductive material layer. The use of in situ doped semiconductor material, such as in situ doped polycrystalline silicon and in situ doped amorphous silicon reduces the exposure of other dopants that may be present to thermal cycles of high temperature, greater than 900.degree. C., that causes these dopants to migrate undesirably.
摘要:
A bulge well structure for trench devices in wells of a conductivity type opposite to that of the substrate where the bottom of the trench has localized, extra doping. The additional doping into the bottom of the trench prior to device formation may be implanted while the photoresist mask for the trench formation is still in place. In one embodiment of the method, the trenches and the bulge or well extension formations at their bottoms are created before isolation regions are formed. The structure and method permit increased doping only where needed and are compatible with thin epitaxial layers and sharp transition interfaces of epitaxy with substrate for optimum latchup protection. No extra masks are required and the tight packing allowed by trench technology is not altered. Protection against soft errors and junction leakage by forming DRAM trench capacitors in a well of opposite conductivity type from the substrate may be provided.
摘要:
An illuminated paper cutter comprising an opaque cutting board having a cutting edge at one side, a cutting blade pivotally attached to the cutting board to coact with the cutting edge to cut material placed between the cutting blade and the cutting edge, and an illuminator attached to the cutting board to illuminate the cutting edge from below, the illuminator being located so as to not extend beyond the outside edge of the cutting edge.
摘要:
A method of using removable sidewall spacers to minimize the need for mask levels in forming lightly doped drains (LDDs) in the formation of CMOS integrated circuits. Aluminum or chemical vapor deposition (CVD) metals such as tungsten are suitable materials to form removable sidewall spacers which exist around CMOS gates during heavily doped source/drain region implants. Other materials such as CVD polysilicon may also be useful for the sidewall spacers. The sidewall spacers are removed before implantation of the lightly doped drain regions around the gates. This implanation sequence is exactly the reverse of what is currently practiced for lightly doped drain formation. The invention also includes the use of a differential oxide layer. A second set of disposable sidewall spacers or the use of permanent sidewall spacers form optional embodiments.
摘要:
A process is disclosed for fabricating complementary insulated gate field effect transistors including doped field isolation regions and optional punch through protection. In one embodiment of invention, a silicon substrate is provided which has N-type and P-type surface regions. First and second masks are formed overlying active areas of the two surface regions. A third mask is then formed overlying the first region and the first mask. P-type impurities are implanted into the second region with an implant energy which is sufficient to penetrate through the second mask but insufficient to penetrate through the third mask. A second P-type implant is performed with an implant energy insufficient to penetrate through either mask. The first implant will aid in preventing punch through while the second implant dopes the field region. A fourth mask is then formed overlying the second region and the second mask. A first N-type implant is performed at energy sufficient to penetrate through the first mask but insufficient to penetrate through the fourth mask. This implant provides punch through protection for P channel transistors to be formed later. A second N-type impurity is implanted into the surface at an implant energy insufficient to penetrate through the first mask to provided field doping. The silicon substrate is then oxidized to form a field oxide at portions of the first and second surface regions which are not covered by the first and second masks.