摘要:
A semiconductor device having a power switch (12) and a saturation detection diode (13) formed in an upper surface of a semiconductor drift region (11) is provided. The saturation detector diode (13) and the power switch (12) are electrically coupled by the drift region (11). An external signal applied to the detector diode (13) forward biases the detector diode (13) when the drift region (11) potential is below a predetermined voltage and the detector diode (13) becomes reverse biased when the drift region (11) potential is greater than the predetermined voltage.
摘要:
A current source with adjustable temperature compensation in which the level of current supplied to a load is adjusted to compensate for the load's inherent change in performance with changes in temperature. The current source allows selection of the appropriate temperature compensating characteristic and operating current solely by altering internal component values.
摘要:
A multi-leaded protected power device having a boot-strap input has been provided. The power device includes a current controlled, boot-strap driven control die (20) for use with a power transistor (25). The control die includes an under voltage lock-out circuit (46) which inhibits drive to the power transistor until the input signals exceed a predetermined threshold level. Moreover, the control die includes a noise immunity enhancement circuit (56) for providing an excess reverse bias across an output SCR (58) for preventing false triggering of the output SCR. The power device further includes a status output lead (204) for indicating when a voltage occurring across the power transistor has exceeded a predetermined threshold, and a current output lead (220) for providing a current that is proportional to a current flowing through the power transistor.
摘要:
A voltage driven control die (20) for use with a power device (22) has been provided. The voltage driven control die includes an under voltage lock-out circuit (46) which inhibits drive to the power device until the input voltage exceeds a predetermined threshold voltage. Moreover, the control die includes a noise immunity enhancement circuit (56) for providing an excess reverse bias across an output SCR (58) for preventing false triggering of the output SCR. The control die also includes circuitry (40, 44) for detecting an over temperature or an over current condition within the power device.
摘要:
A voltage reference circuit is provided for developing an output voltage operating independent of temperature and power supply variation. A current reference circit provides a current reference signal operating independent of power supply variation and having a predetermined temperature coefficient and flowing through a first transistor and a first resistor each having opposite temperature coefficients. The output voltage is established as the sum of the base-emitter junction potential of the first transistor and the potential developed across the first resistor. The temperature coefficient of the potential developed across the first resistor substantially cancels the temperature coefficient across the base-emitter junction of the first transistor thereby providing the output voltage operating independent of temperature and power supply variation.
摘要:
A control circuit for protecting a power device has been provided. The control circuit has a thermal shutdown circuit for activating a first SCR when the temperature of the control circuit exceeds a predetermined temperature. Additionally, the control circuit has a DSAT detection circuit for activating the first SCR in response to an external signal. The first SCR is coupled across an input terminal and the common terminal of the control circuit. When the first SCR latches, it functions to subsequently latch a second SCR that is coupled across the output and common terminals. The second SCR functions to rapidly discharge the voltage appearing across the output and common terminals.Additionally, the control circuit includes an input level sensitive circuit which may be utilized to deactivate various circuitry depending upon the current level of an input signal supplied to the control circuit.
摘要:
A memory circuit which includes a memory SCR and an output SCR is provided. The memory SCR is coupled between the input terminal and the common terminal of the memory circuit wherein the input terminal is the control terminal of the output SCR and the output SCR is coupled across the output terminal and the common terminal of the memory circuit. When the memory SCR latches, it functions to subsequently latch the output SCR. Because the output SCR has a greater forward operating voltage than the memory SCR and by providing a current path from the output terminal to the memory SCR, the memory SCR remains latched during the transition period of when the output SCR goes from a latched state to an unlatched state.
摘要:
A method for protecting a semiconductor power die has been provided. The method involves inserting an integrated circuit die between the gate lead of a package containing the semiconductor power die and the actual gate terminal of the semiconductor power die. As a result, any current flowing into the gate lead of the package must pass through the integrated circuit die before entering the semiconductor power die. This allows the integrated circuit die to monitor and control the semiconductor power die.
摘要:
A micromachined capacitor structure having a first anchor (12) attached to the substrate (24), a tether (13) coupled to the anchor (12) and having a portion free to move in a lateral direction over the substrate (24) in response to acceleration. A tie-bar (14) is coupled to the movable portion of the tether (13), and at least one movable capacitor plate (16) is coupled to the tie bar (13). A first fixed capacitor plate (16) is attached to the substrate (24) laterally overlapping and vertically spaced from the at least one movable capacitor plate (16).
摘要:
A low voltage sixteen bit digital-to-analog converter operable between +5 and -5 volt power supplies and capable of providing output voltage levels to within about 1.4 volts of +V.sub.CC and -V.sub.CC includes a push-pull output stage with only a pullup transistor and a pulldown transistor connected in series between the positive and negative supply voltages. The output stage includes circuitry that reduces the base voltage of the pullup transistor or pulldown transistor enough to reduce its collector current to near zero, greatly increasing its effective collector-to-emitter breakdown voltage.