Abstract:
A method for generating a polar code includes the steps of: establishing a plurality of polarization matrices that receive a plurality of first input bits via a plurality of first input channels and provide a plurality of first output bits on a plurality of first output channels; selecting at least one to-be-enhanced input channel from the first input channels of the polarization matrices; providing a re-polarization matrix that receives a plurality of second input bits via a plurality of second input channels and provides a plurality of second output bits on a plurality of second output channels, wherein a part of the second output bits is used as the first output bit(s) on the at least one to-be-enhanced input channel; and providing a polar code that comprises the first output bits and a remaining part of the second output bits.
Abstract:
The present invention discloses an encoder, a decoder, an encoding method and a decoding method based on Low-Density Parity-Check (LDPC) code. The encoding method comprises: receiving, by an encoder, an information for encoding; generating, by the encoder, a first portion codeword according to a first encoding rule and the information for encoding, wherein the first encoding rule is an encoding rule configured to generate LDPC code; generating, by the encoder, a second portion codeword according to a second encoding rule different from the first encoding rule and a double check region of the first portion codeword; and concatenating, by the encoder, the first portion codeword and the second portion codeword to generate a codeword. A plurality of trapping sets corresponding to the first encoding rule include at least one error bit within the double check region.
Abstract:
A memory system for maintaining data consistency and an operation method thereof are provided. The operation method includes: receiving a first data in a first cache of a first memory from a processor; reading the first data from the first cache and writing the first data as a redo log into a log buffer of the first memory; writing the redo log from the log buffer into a memory controller of the processor; performing an in-memory copy in a second memory to copy a second data as an undo log, wherein the second data is an old version of the first data; and writing the redo log from the memory controller into the second memory for covering the second data by the redo log as a third data, wherein the redo log, the third data and the first data are the same.
Abstract:
A memory system includes a memory array including a plurality of memory cells, and an encoder operatively coupled to the memory array, for encoding an original data element to be programmed into the memory cells into a uniform data element in which the number of “0”s approximately equals the number of “1”s.
Abstract:
A storage system capable of executing data processing, includes the following elements. A first control unit of a storage device, for cooperating with a sequencer to perform a clustering process on a plurality of original sequences to obtain a plurality of read sequences, generating a plurality of read binary vectors corresponding to the read sequences, and generating a pruned filtering binary vector according to a reference sequence. A first storage module of the storage device, for storing the read binary vectors and the pruned filtering binary vector, and executing an in-memory computing (IMC) according to the read binary vectors and the pruned filtering binary vector, so as to generate a filtered cluster read set. A processing device, for executing an aligning process according to the filtered cluster read set and the reference sequence.
Abstract:
The present disclosure provides a memory system, a method of operating memory, and a non-transitory computer readable storage medium. The memory system includes a memory chip and a controller. The controller is coupled with the memory chip, which the controller is configured to: receive a first data corresponding to a first version from a file system in order to store the first data corresponding to the first version in a first page of the flash memory chip; and program the first data corresponding to a second version in the first page in response to the first data of the second version, which the second version is newer than the first version.
Abstract:
A memory device includes a memory controller and a non-volatile memory communicatively coupled to the memory controller and storing a mapping table and a journal table. The memory controller is configured to write data and a logical address of the data into the non-volatile memory, load mapping information related to the logical address of the data from the mapping table of the non-volatile memory into a mapping cache of the memory controller, update the mapping cache with an updated mapping relationship between the logical address of the data and a physical address of the data, and perform a journaling operation to write the updated mapping relationship into the journal table.
Abstract:
A method for increasing coding reliability includes generating a generator matrix for an extended polar code including a standard polar code part and an additional frozen part. The standard polar code part has N bit-channels, including K information bit-channels and N−K frozen bit-channels. The additional frozen part has q additional frozen bit-channels. Among the K information bit-channels, q information bit-channels are re-polarized using the q additional frozen bit-channels. The method further includes receiving an input vector including K information bits and N+q−K frozen bits, and transforming, using the generator matrix, the input vector to an output vector including N+q encoded bits. The K information bits are allocated to the K information bit-channels, and the N+q−K frozen bits are allocated to the N−K frozen bit-channels and the q additional frozen bit-channels.
Abstract:
A method for writing data into a persistent storage device includes grouping a plurality of data entries stored in a temporary storage device to form a data unit, such that the data unit has a size equal to an integer multiple of a size of an access unit of the persistent storage device. The method further includes writing the data unit into the persistent storage device.
Abstract:
A method for increasing coding reliability includes generating a generator matrix for an extended polar code including a standard polar code part and an additional frozen part. The standard polar code part has N bit-channels, including K information bit-channels and N−K frozen bit-channels. The additional frozen part has q additional frozen bit-channels. Among the K information bit-channels, q information bit-channels are re-polarized using the q additional frozen bit-channels. The method further includes receiving an input vector including K information bits and N+q−K frozen bits, and transforming, using the generator matrix, the input vector to an output vector including N+q encoded bits. The K information bits are allocated to the K information bit-channels, and the N+q−K frozen bits are allocated to the N−K frozen bit-channels and the q additional frozen bit-channels.