Abstract:
A memory interface includes a buffer for storing requests for accessing a volatile memory, which includes at least two ranks of memory cell of a memory channel The memory interface monitors the requests to access each rank in the buffer. Upon detecting from the requests that a given rank of the at least two ranks is to be idle for a time period exceeding a time threshold, the circuitry signals a controller to command the given rank to enter a self-refresh mode independent of a refresh mode of other ranks. The memory interface is coupled to a processor, which executes an operating system (OS) kernel to prioritize memory allocation from a prioritized rank of the at least two ranks over the given rank, and migrates allocated memory blocks from the given rank to the prioritized rank to increase a probability of idleness of the given rank.
Abstract:
A processor equipped with hybrid core architecture and an associated method are provided, where the processor includes a hybrid core that is configurable into different arrangements in different modes of the hybrid core, respectively, and the different arrangements includes a first arrangement and a second arrangement. The first arrangement in a first mode of the hybrid core causes the hybrid core to act as a first core, and the first core corresponding to the first arrangement is arranged for reading and executing program instructions for the processor. The second arrangement in a second mode of the hybrid core causes the hybrid core to act as a second core, and the second core corresponding to the second arrangement is arranged for reading and executing program instructions for the processor. The second core corresponding to the second arrangement shares a portion of circuits of the first core corresponding to the first arrangement.
Abstract:
A method for performing system power budgeting within an electronic device and an associated apparatus are provided. The method includes the steps of: utilizing a power consumption index generator positioned in a specific subsystem to generate a power consumption index corresponding to the specific subsystem, where the electronic device includes a plurality of subsystems, and the specific subsystem is one of the plurality of subsystems; and performing configuration adjustment on at least one portion of the electronic device according to the power consumption index corresponding to the specific subsystem.
Abstract:
A memory interface includes a buffer for storing requests for accessing a volatile memory, which includes at least two ranks of memory cell of a memory channel The memory interface monitors the requests to access each rank in the buffer. Upon detecting from the requests that a given rank of the at least two ranks is to be idle for a time period exceeding a time threshold, the circuitry signals a controller to command the given rank to enter a self-refresh mode independent of a refresh mode of other ranks. The memory interface is coupled to a processor, which executes an operating system (OS) kernel to prioritize memory allocation from a prioritized rank of the at least two ranks over the given rank, and migrates allocated memory blocks from the given rank to the prioritized rank to increase a probability of idleness of the given rank.
Abstract:
A method for performing system power control within an electronic device and an associated apparatus are provided. The method includes the steps of: utilizing a power consumption index generator positioned in a specific subsystem to generate a power consumption index corresponding to the specific subsystem, where the electronic device includes a plurality of subsystems, and the specific subsystem is one of the plurality of subsystems; and triggering a power limiter protection operation for the electronic device according to the power consumption index. For example, the power consumption index corresponding to the specific subsystem may represent a power consumption value of the specific subsystem, and the method may further include: comparing the power consumption value of the specific subsystem with a peak power threshold to determine whether the power consumed by the specific subsystem reaches the peak power threshold to generate a determining result, for triggering the power limiter protection operation.
Abstract:
A method for performing system power control within an electronic device and an associated apparatus are provided. The method includes the steps of: utilizing a power consumption index generator positioned in a specific subsystem to generate a power consumption index corresponding to the specific subsystem, where the electronic device includes a plurality of subsystems, and the specific subsystem is one of the plurality of subsystems; and triggering a power limiter protection operation for the electronic device according to the power consumption index. For example, the power consumption index corresponding to the specific subsystem may represent a power consumption value of the specific subsystem, and the method may further include: comparing the power consumption value of the specific subsystem with a peak power threshold to determine whether the power consumed by the specific subsystem reaches the peak power threshold to generate a determining result, for triggering the power limiter protection operation.
Abstract:
A method for performing system power budgeting within an electronic device and an associated apparatus are provided. The method includes the steps of: utilizing a power consumption index generator positioned in a specific subsystem to generate a power consumption index corresponding to the specific subsystem, where the electronic device includes a plurality of subsystems, and the specific subsystem is one of the plurality of subsystems; and performing configuration adjustment on at least one portion of the electronic device according to the power consumption index corresponding to the specific subsystem.
Abstract:
A method for performing system power budgeting within an electronic device and an associated apparatus are provided. The method includes the steps of: utilizing a power consumption index generator positioned in a specific subsystem to generate a power consumption index corresponding to the specific subsystem, where the electronic device includes a plurality of subsystems, and the specific subsystem is one of the plurality of subsystems; and performing configuration adjustment on at least one portion of the electronic device according to the power consumption index corresponding to the specific subsystem.
Abstract:
A power management method includes providing status information of an external module to an intermediary module for updating status data; accessing updated status data via the intermediary module; determining a power value according to the updated status data; determining power allocation according to at least the power value; and providing power to the external module according to the power allocation.
Abstract:
A method for performing system power control within an electronic device and an associated apparatus are provided. The method includes the steps of: utilizing a power consumption index generator positioned in a specific subsystem to generate a power consumption index corresponding to the specific subsystem, where the electronic device includes a plurality of subsystems, and the specific subsystem is one of the plurality of subsystems; and triggering a power limiter protection operation for the electronic device according to the power consumption index. For example, the power consumption index corresponding to the specific subsystem may represent a power consumption value of the specific subsystem, and the method may further include: comparing the power consumption value of the specific subsystem with a peak power threshold to determine whether the power consumed by the specific subsystem reaches the peak power threshold to generate a determining result, for triggering the power limiter protection operation.