Abstract:
Techniques for sensor calibration involve determining a generative model using sensor measurements from different instances of a first glucose sensor together with corresponding reference glucose values. The generative model is configured to generate a simulated measurement representing a predicted output of the first glucose sensor under specific operating conditions. A set of simulated measurements is generated using operating conditions observed with respect to a second glucose sensor as inputs to the generative model. The second glucose sensor is a sensor of a different design. The operating conditions observed with respect to the second glucose sensor include reference glucose values obtained in connection with measurements made using the second glucose sensor. The simulated measurements are then used to determine an estimation model for the first glucose sensor. The estimation model is configured to estimate glucose level given one or more sensor measurements from the first glucose sensor.
Abstract:
Disclosed are methods and corresponding systems and devices for providing an estimation model for use with one or more instances of a particular sensor. In some aspects, an estimation model usable for estimating a value of a physiological condition is determined based at least in part on simulated measurements. The simulated measurements are generated for a first sensor, through applying a translation model to convert historical measurements associated with a second sensor into measurements that would have been produced by the first sensor. The second sensor has a different design or configuration than the first sensor. The historical measurements represent changes in the physiological condition as observed by different instances of the second sensor. The estimation model can be made available to one or more electronic devices, including at least one device configured to apply the estimation model to a measurement from a corresponding instance of the first sensor.
Abstract:
A method for optional external calibration of a calibration-free glucose sensor uses values of measured working electrode current (Isig) and EIS data to calculate a final sensor glucose (SG) value. Counter electrode voltage (Vcntr) may also be used as an input. Raw Isig and Vcntr values may be preprocessed, and low-pass filtering, averaging, and/or feature generation may be applied. SG values may be generated using one or more models for predicting SG calculations. When an external blood glucose (BG) value is available, the BG value may also be used in calculating the SG values. A SG variance estimate may be calculated for each predicted SG value and modulated, with the modulated SG values then fused to generate a fused SG. A Kalman filter, as well as error detection logic, may be applied to the fused SG value to obtain a final SG, which is then displayed to the user.
Abstract:
Medical devices and related patient management systems and parameter modeling methods are provided. An exemplary method involves obtaining, by a computing device, historical measurements of a condition in a body of the patient previously provided by a sensing device, obtaining, by the computing device, historical operational context information associated with preceding operation of one or more of an infusion device and the sensing device, obtaining, by the computing device, historical values for a parameter from one or more of the infusion device and the sensing device, determining, by the computing device a patient-specific model of the parameter based on relationships between the historical measurements, the historical operational context information and the historical values, and providing, by the computing device via a network, the patient-specific model to one of the infusion device, the sensing device or a client device.
Abstract:
A continuous glucose monitoring system may utilize externally sourced information regarding the physiological state and ambient environment of its user for externally calibrating sensor glucose measurements. Externally sourced factory calibration information may be utilized, where the information is generated by comparing metrics obtained from the data used to generate the sensor's glucose sensing algorithm to similar data obtained from each batch of sensors to be used with the algorithm in the future. The output sensor glucose value of a glucose sensor may also be estimated by analytically optimizing input sensor signals to accurately correct for changes in sensitivity, run-in time, glucose current dips, and other variable sensor wear effects. Correction actors, fusion algorithms, EIS, and advanced ASICs may be used to implement the foregoing, thereby achieving the goal of improved accuracy and reliability without the need for blood-glucose calibration, and providing a calibration-free, or near calibration-free, sensor.
Abstract:
Medical devices and related systems and methods are provided. A method of estimating a physiological condition involves determining a translation model based at least in part on relationships between first measurement data corresponding to instances of a first sensing arrangement and second measurement data corresponding to instances of a second sensing arrangement, obtaining third measurement data associated with the second sensing arrangement, determining simulated measurement data for the first sensing arrangement by applying the translation model to the third measurement data, and determining an estimation model for a physiological condition using the simulated measurement data, wherein the estimation model is applied to subsequent measurement output provided by an instance of the first sensing arrangement to obtain an estimated value for the physiological condition.
Abstract:
A processor-implemented method comprises obtaining current operational context information associated with a sensing device; obtaining an expected calibration factor parameter model associated with a patient; calculating an expected calibration factor value based on the expected calibration factor parameter model and the current operational context information; obtaining one or more electrical signals from the sensing device, the one or more electrical signals having a signal characteristic indicative of a physiological condition; converting the one or more electrical signals into a calibrated measurement value for the physiological condition using the expected calibration factor value; and outputting the calibrated measurement value for the physiological condition.
Abstract:
A continuous glucose monitoring system may utilize externally sourced information regarding the physiological state and ambient environment of its user for externally calibrating sensor glucose measurements. Externally sourced factory calibration information may be utilized, where the information is generated by comparing metrics obtained from the data used to generate the sensor's glucose sensing algorithm to similar data obtained from each batch of sensors to be used with the algorithm in the future. The output sensor glucose value of a glucose sensor may also be estimated by analytically optimizing input sensor signals to accurately correct for changes in sensitivity, run-in time, glucose current dips, and other variable sensor wear effects. Correction actors, fusion algorithms, EIS, and advanced ASICs may be used to implement the foregoing, thereby achieving the goal of improved accuracy and reliability without the need for blood-glucose calibration, and providing a calibration-free, or near calibration-free, sensor.
Abstract:
A continuous glucose monitoring system may utilize externally sourced information regarding the physiological state and ambient environment of its user for externally calibrating sensor glucose measurements. Externally sourced factory calibration information may be utilized, where the information is generated by comparing metrics obtained from the data used to generate the sensor's glucose sensing algorithm to similar data obtained from each batch of sensors to be used with the algorithm in the future. The output sensor glucose value of a glucose sensor may also be estimated by analytically optimizing input sensor signals to accurately correct for changes in sensitivity, run-in time, glucose current dips, and other variable sensor wear effects. Correction actors, fusion algorithms, EIS, and advanced ASICs may be used to implement the foregoing, thereby achieving the goal of improved accuracy and reliability without the need for blood-glucose calibration, and providing a calibration-free, or near calibration-free, sensor.
Abstract:
A continuous glucose monitoring system may utilize electrode current (Isig) signals, Electrochemical Impedance Spectroscopy (EIS), and Vcntr values to optimize sensor glucose (SG) calculation in such a way as to enable reduction of the need for blood glucose (BG) calibration requests from users.