-
1.
公开(公告)号:US11311215B2
公开(公告)日:2022-04-26
申请号:US16375752
申请日:2019-04-04
Applicant: MEDTRONIC MINIMED, INC.
Inventor: Chi-En Lin , David Probst , Mohsen Askarinya , Akhil Srinivasan , Melissa Tsang , Michael E. Miller , Parisa Kamgar
IPC: A61B5/145 , A61B5/1486 , G01N27/327 , C12Q1/54 , G01N27/02 , A61B5/00 , C12Q1/00
Abstract: The invention includes method and materials designed to measure the material properties (e.g. thickness) of layers of material in a sensor using non-Faradaic EIS (Electrochemical Impedance Spectroscopy) methods. The methods are non-destructive, very sensitive and rapid. Typically in these methods, an AC voltage is applied to the desired material layer while the output current and therefore impedance is measured. This voltage can be applied in multiple frequencies in sweep mode in order to detect both the material and, for example, the thickness of the target material. In this way, EIS allows the characterization of properties of various layers of material disposed in devices such as electrochemical glucose sensors.
-
公开(公告)号:US20210024972A1
公开(公告)日:2021-01-28
申请号:US16523882
申请日:2019-07-26
Applicant: Medtronic MiniMed, Inc.
Inventor: Daniel E. Pesantez , Ashwin K. Rao , Ellis Garai , Rui Kong , Michael E. Miller
IPC: C12Q1/00 , A61B5/145 , A61B5/1486 , G01N27/327
Abstract: Embodiments of the invention provide multilayer analyte sensors having elements and/or architectures that function to improve oxygen delivery to sensor enzymes in manner that enhances sensor function, as well as methods for making and using such sensors. Typical embodiments of the invention include glucose sensors used in the management of diabetes.
-
公开(公告)号:US10549036B2
公开(公告)日:2020-02-04
申请号:US15282731
申请日:2016-09-30
Applicant: Medtronic MiniMed, Inc.
Inventor: Timothy J. Starkweather , Ronald J. Lebel , Rajiv Shah , Michael E. Miller
Abstract: A system and method for providing closed loop infusion formulation delivery which accurately calculates a delivery amount based on a sensed biological state by adjusting an algorithm's programmable control parameters. The algorithm calculates a delivery amount having proportional, derivative, and basal rate components. The control parameters may be adjusted in real time to compensate for changes in a sensed biological state that may result from daily events. Safety limits on the delivery amount may be included in the algorithm. The algorithm may be executed by a computing element within a process controller for controlling closed loop infusion formulation delivery. The biological state is sensed by a sensing device which provides a signal to the controller. The controller calculates an infusion formulation delivery amount based on the signal and sends commands to an infusion formulation delivery device which delivers an amount of infusion formulation determined by the commands.
-
4.
公开(公告)号:US20180074010A1
公开(公告)日:2018-03-15
申请号:US15818111
申请日:2017-11-20
Applicant: Medtronic Minimed, Inc.
Inventor: Jenn-Hann Larry Wang , Michael E. Miller , Raghavendhar Gautham , Yiwen Li , Rajiv Shah
IPC: G01N27/416 , G01R35/00 , A61B5/145 , A61B5/1459 , A61B5/1473 , A61B5/1486 , G01N33/66 , G01N27/02 , A61M5/172 , A61M5/158 , A61B5/00 , A61B5/1495 , A61M5/142 , A61B5/053
CPC classification number: A61B5/1495 , A61B5/0537 , A61B5/0538 , A61B5/14503 , A61B5/14532 , A61B5/1459 , A61B5/1473 , A61B5/14865 , A61B5/4839 , A61B5/6849 , A61B5/6852 , A61B5/7203 , A61B5/7221 , A61B5/7225 , A61B5/7242 , A61B5/746 , A61B2562/0214 , A61B2562/04 , A61M5/14244 , A61M5/14276 , A61M5/1582 , A61M5/1723 , A61M2005/1726 , G01N27/026 , G01N27/028 , G01N27/416 , G01N27/4163 , G01N33/49 , G01N33/66 , G01N33/96 , G01R35/00 , G01R35/005
Abstract: A diagnostic Electrochemical Impedance Spectroscopy (EIS) procedure is applied to measure values of impedance-related parameters for one or more sensing electrodes. The parameters may include real impedance, imaginary impedance, impedance magnitude, and/or phase angle. The measured values of the impedance-related parameters are then used in performing sensor diagnostics, calculating a highly-reliable fused sensor glucose value based on signals from a plurality of redundant sensing electrodes, calibrating sensors, detecting interferents within close proximity of one or more sensing electrodes, and testing surface area characteristics of electroplated electrodes. Advantageously, impedance-related parameters can be defined that are substantially glucose-independent over specific ranges of frequencies. An Application Specific Integrated Circuit (ASIC) enables implementation of the EIS-based diagnostics, fusion algorithms, and other processes based on measurement of EIS-based parameters.
-
5.
公开(公告)号:US11963768B2
公开(公告)日:2024-04-23
申请号:US17737236
申请日:2022-05-05
Applicant: Medtronic MiniMed, Inc.
Inventor: Keith Nogueira , Peter Ajemba , Michael E. Miller , Steven C. Jacks , Jeffrey Nishida , Andy Y. Tsai , Andrea Varsavsky
IPC: A61B5/1495 , A61B5/00 , A61B5/0205 , A61B5/021 , A61B5/024 , A61B5/11 , A61B5/145 , A61B5/1455 , A61B5/1468 , A61B5/1486 , G01N27/02 , G06N5/022 , G16H20/17 , G16H40/40 , G16H50/30 , G16H50/70
CPC classification number: A61B5/1495 , A61B5/14532 , A61B5/1468 , A61B5/14865 , A61B5/6849 , A61B5/686 , G01N27/026 , G06N5/022 , G16H20/17 , G16H40/40 , G16H50/30 , G16H50/70 , A61B5/0075 , A61B5/02055 , A61B5/021 , A61B5/024 , A61B5/1118 , A61B5/14546 , A61B5/1455 , A61B5/7203 , A61B5/7221 , A61B5/7267 , A61B5/742 , A61B2505/07 , A61B2560/0223 , A61B2560/0252 , A61B2560/0257 , A61B2562/028 , A61B2562/029 , A61B2562/164
Abstract: A continuous glucose monitoring system may utilize externally sourced information regarding the physiological state and ambient environment of its user for externally calibrating sensor glucose measurements. Externally sourced factory calibration information may be utilized, where the information is generated by comparing metrics obtained from the data used to generate the sensor's glucose sensing algorithm to similar data obtained from each batch of sensors to be used with the algorithm in the future. The output sensor glucose value of a glucose sensor may also be estimated by analytically optimizing input sensor signals to accurately correct for changes in sensitivity, run-in time, glucose current dips, and other variable sensor wear effects. Correction actors, fusion algorithms, EIS, and advanced ASICs may be used to implement the foregoing, thereby achieving the goal of improved accuracy and reliability without the need for blood-glucose calibration, and providing a calibration-free, or near calibration-free, sensor.
-
公开(公告)号:US11718865B2
公开(公告)日:2023-08-08
申请号:US16523882
申请日:2019-07-26
Applicant: Medtronic MiniMed, Inc.
Inventor: Daniel E. Pesantez , Ashwin K. Rao , Ellis Garai , Rui Kong , Michael E. Miller
IPC: A61B5/145 , C12Q1/00 , A61B5/1486 , G01N27/327
CPC classification number: C12Q1/006 , A61B5/14532 , A61B5/14865 , G01N27/3271 , A61B2562/04 , A61B2562/12
Abstract: Embodiments of the invention provide multilayer analyte sensors having elements and/or architectures that function to improve oxygen delivery to sensor enzymes in manner that enhances sensor function, as well as methods for making and using such sensors. Typical embodiments of the invention include glucose sensors used in the management of diabetes.
-
7.
公开(公告)号:US20200315504A1
公开(公告)日:2020-10-08
申请号:US16375752
申请日:2019-04-04
Applicant: MEDTRONIC MINIMED, INC.
Inventor: Chi-En Lin , David Probst , Mohsen Askarinya , Akhil Srinivasan , Melissa Tsang , Michael E. Miller , Parisa Kamgar
IPC: A61B5/145 , A61B5/1486 , C12Q1/54 , G01N27/327 , A61B5/00
Abstract: The invention includes method and materials designed to measure the material properties (e.g. thickness) of layers of material in a sensor using non-Faradaic EIS (Electrochemical Impedance Spectroscopy) methods. The methods are non-destructive, very sensitive and rapid. Typically in these methods, an AC voltage is applied to the desired material layer while the output current and therefore impedance is measured. This voltage can be applied in multiple frequencies in sweep mode in order to detect both the material and, for example, the thickness of the target material. In this way, EIS allows the characterization of properties of various layers of material disposed in devices such as electrochemical glucose sensors.
-
公开(公告)号:US09989491B2
公开(公告)日:2018-06-05
申请号:US15472575
申请日:2017-03-29
Applicant: MEDTRONIC MINIMED, INC.
Inventor: Catherine M. Szyman , Michael E. Miller , Rajiv Shah
IPC: A61B5/05 , G01N27/416 , G01R35/00 , A61B5/145 , A61B5/1473 , A61B5/00 , A61B5/053 , A61B5/1495 , G01N33/66 , A61B5/1459 , A61M5/158 , A61B5/1486 , A61M5/142 , G01N27/02 , G01N33/96 , G01N33/49 , A61M5/172
CPC classification number: G01N27/4163 , A61B5/0537 , A61B5/0538 , A61B5/14503 , A61B5/14532 , A61B5/1459 , A61B5/1473 , A61B5/14865 , A61B5/1495 , A61B5/4839 , A61B5/6849 , A61B5/6852 , A61B5/7203 , A61B5/7221 , A61B5/7225 , A61B5/7242 , A61B5/746 , A61B2562/0214 , A61B2562/04 , A61M5/14244 , A61M5/14276 , A61M5/1582 , A61M5/1723 , A61M2005/1726 , G01N27/026 , G01N27/028 , G01N27/416 , G01N33/49 , G01N33/66 , G01N33/96 , G01R35/00 , G01R35/005
Abstract: A diagnostic Electrochemical Impedance Spectroscopy (EIS) procedure is applied to measure values of impedance-related parameters for one or more sensing electrodes. The parameters may include real impedance, imaginary impedance, impedance magnitude, and/or phase angle. The measured values of the impedance-related parameters are then used in performing sensor diagnostics, calculating a highly-reliable fused sensor glucose value based on signals from a plurality of redundant sensing electrodes, calibrating sensors, detecting interferents within close proximity of one or more sensing electrodes, and testing surface area characteristics of electroplated electrodes. Advantageously, impedance-related parameters can be defined that are substantially glucose-independent over specific ranges of frequencies. An Application Specific Integrated Circuit (ASIC) enables implementation of the EIS-based diagnostics, fusion algorithms, and other processes based on measurement of EIS-based parameters.
-
公开(公告)号:US20170197030A1
公开(公告)日:2017-07-13
申请号:US15472575
申请日:2017-03-29
Applicant: MEDTRONIC MINIMED, INC.
Inventor: Catherine M. Szyman , Michael E. Miller , Rajiv Shah
IPC: A61M5/172 , G01N27/416 , A61B5/00 , A61B5/145 , A61B5/1473 , A61M5/142 , G01N27/02 , A61B5/053
CPC classification number: G01N27/4163 , A61B5/0537 , A61B5/0538 , A61B5/14503 , A61B5/14532 , A61B5/1459 , A61B5/1473 , A61B5/14865 , A61B5/1495 , A61B5/4839 , A61B5/6849 , A61B5/6852 , A61B5/7203 , A61B5/7221 , A61B5/7225 , A61B5/7242 , A61B5/746 , A61B2562/0214 , A61B2562/04 , A61M5/14244 , A61M5/14276 , A61M5/1582 , A61M5/1723 , A61M2005/1726 , G01N27/026 , G01N27/028 , G01N27/416 , G01N33/49 , G01N33/66 , G01N33/96 , G01R35/00 , G01R35/005
Abstract: A diagnostic Electrochemical Impedance Spectroscopy (EIS) procedure is applied to measure values of impedance-related parameters for one or more sensing electrodes. The parameters may include real impedance, imaginary impedance, impedance magnitude, and/or phase angle. The measured values of the impedance-related parameters are then used in performing sensor diagnostics, calculating a highly-reliable fused sensor glucose value based on signals from a plurality of redundant sensing electrodes, calibrating sensors, detecting interferents within close proximity of one or more sensing electrodes, and testing surface area characteristics of electroplated electrodes. Advantageously, impedance-related parameters can be defined that are substantially glucose-independent over specific ranges of frequencies. An Application Specific Integrated Circuit (ASIC) enables implementation of the EIS-based diagnostics, fusion algorithms, and other processes based on measurement of EIS-based parameters.
-
10.
公开(公告)号:US20240285199A1
公开(公告)日:2024-08-29
申请号:US18643565
申请日:2024-04-23
Applicant: Medtronic MiniMed, Inc.
Inventor: Keith Nogueira , Peter Ajemba , Michael E. Miller , Steven C. Jacks , Jeffrey Nishida , Andy Y. Tsai , Andrea Varsavsky
IPC: A61B5/1495 , A61B5/00 , A61B5/0205 , A61B5/021 , A61B5/024 , A61B5/11 , A61B5/145 , A61B5/1455 , A61B5/1468 , A61B5/1486 , G01N27/02 , G06N5/022 , G16H20/17 , G16H40/40 , G16H50/30 , G16H50/70
CPC classification number: A61B5/1495 , A61B5/14532 , A61B5/1468 , A61B5/14865 , A61B5/6849 , A61B5/686 , G01N27/026 , G06N5/022 , G16H20/17 , G16H40/40 , G16H50/30 , G16H50/70 , A61B5/0075 , A61B5/02055 , A61B5/021 , A61B5/024 , A61B5/1118 , A61B5/14546 , A61B5/1455 , A61B5/7203 , A61B5/7221 , A61B5/7267 , A61B5/742 , A61B2505/07 , A61B2560/0223 , A61B2560/0252 , A61B2560/0257 , A61B2562/028 , A61B2562/029 , A61B2562/164
Abstract: A continuous glucose monitoring system may utilize externally sourced information regarding the physiological state and ambient environment of its user for externally calibrating sensor glucose measurements. Externally sourced factory calibration information may be utilized, where the information is generated by comparing metrics obtained from the data used to generate the sensor's glucose sensing algorithm to similar data obtained from each batch of sensors to be used with the algorithm in the future. The output sensor glucose value of a glucose sensor may also be estimated by analytically optimizing input sensor signals to accurately correct for changes in sensitivity, run-in time, glucose current dips, and other variable sensor wear effects. Correction actors, fusion algorithms, EIS, and advanced ASICs may be used to implement the foregoing, thereby achieving the goal of improved accuracy and reliability without the need for blood-glucose calibration, and providing a calibration-free, or near calibration-free, sensor.
-
-
-
-
-
-
-
-
-