Abstract:
A vehicle software management system includes a transceiver configured to communicate information with a server, and a processor in communication with the transceiver. The processor may be configured to receive a file manifest from the server and transmit a list of to-be updated application file(s) based on the file manifest to the server. The processor may be further configured to receive one or more application files from the server based on the list. The processor may be further configured to flash one or more systems using the one or more application files based on at least one of destination file location, installation type, and file identification.
Abstract:
A mobile device may be associated with a vehicle for verification of software updates. The mobile device may be configured to receive a message including an encryption key with which a software update for the vehicle is encrypted, provide a user interface requesting user verification of installation of the software update, and responsive to receipt of the user verification, provide the encryption key to the vehicle to allow the vehicle to decrypt the software update. An update server may be configured to send a software update encrypted using an encryption key to a vehicle, receive a request from the vehicle requesting that the encryption key used to encrypt the software update be provided to a mobile device associated with the vehicle for verification of software updates, and send the encryption key to the mobile device responsive to the request.
Abstract:
A vehicle system may be connected to a mobile device over a data connection and an audio connection, and configured to, responsive to a vehicle volume change, request over the data connection that the mobile device provide an audio indication at device volume over the audio connection, and reproduce the audio indication by the vehicle system, at vehicle volume, to indicate a loudness for audio played back from the mobile device. The mobile device may be connected to the vehicle system over the data connection and the audio connection, and configured to receive the request over the data connection that the mobile device provide the audio indication over the audio connection, and provide the audio indication at device volume to allow the vehicle system to reproduce the audio indication at the overall volume of sound played back from the mobile device through the vehicle system.
Abstract:
A vehicle computing system includes a processor connected to a transceiver and programmed to prompt an occupant via a user interface to pair a device detected by the transceiver. The processor is further programmed to receive input at the user interface to associate the device with a pre-approval setting for enabling a vehicle start request when the device having the pre-approval setting and a vehicle key are detected by the processor.
Abstract:
A vehicle computing system includes a plurality of sensors, one or more lights, and at least one controller used to notify a driver of a detected object. The plurality of sensors may be configured to detect and measure a distance to the detected object. The at least one controller may be configured to select a color for display at the one or more lights based on the detected object being within a first predefined distance. The at least one controller may be further configured to adjust a brightness intensity for the one or more lights based on the selected color and the distance to the detected object.
Abstract:
A master media consumption device may stream media content to a plurality of slave media consumption devices for video playback, and may send playback status updates to the plurality of slave media consumption devices and the master media device to maintain synchronization of the audio and video playback. A device may identify as a master media device when connected to a computing platform of a vehicle, and as a media consumption device otherwise when the device is connected to the master media device. The device, when operating as the media consumption device, may display a video portion of an instance of media content; and when operating as the master media device, may provide an audio portion of the media content to the computing platform.
Abstract:
A system may include global controls, each associated with a different one of a plurality of user interface screens of a vehicle; contextual controls, each associated with a command function available from a selected one of the plurality of user interface screens; and a vehicle processor configured to display a current one of the plurality of user interface screens, and update command functions associated with the contextual controls responsive to user input to the global controls. A method may include, responsive to receiving an indication of a user input press of a global control, updating command functions associated with contextual controls in accordance with command function available from a user interface screen associated with the global control; and upon receiving a user input release of the global control within a predetermined threshold period of time, navigating to the user interface screen associated with the global control.
Abstract:
A vehicle infotainment system includes a vehicle processor connected to a transceiver and programmed to transmit human-machine interface (HMI) data to a connected mobile device using websockets via the transceiver. The vehicle processor is further programmed to, in response to the connected mobile device via the transceiver, receive a message requesting HMI data being outputted at a vehicle display. The vehicle processor is further programmed to transmit the HMI data to the mobile device via websockets and receive a parameter adjustment via a remote procedure call for a parameter associated with the HMI data.
Abstract:
A computer readable storage medium, storing instructions, which, when executed by a processor, cause the processor to perform a shutdown method for one or more applications. The method may comprise monitoring a communication link with a vehicle computing system. The method may further comprise transmitting a termination message based upon detecting a disconnection of the communication link. The termination message includes instructions to shutdown the one or more applications utilizing the communication link.
Abstract:
A device dock of a vehicle may receive a one-time key over a data connection between the device dock and a vehicle computing system (VCS), and send the one-time key over a location-identifying connection to a nomadic device placed within proximity to the dock, to cause the nomadic device to send the one-time key to the VCS to integrate with the VCS as a driver device. The VCS may receive, from a nomadic device in a device dock, via a data connection between the VCS and the nomadic device, a one-time key provided from the VCS to the device dock over a data connection between the VCS and the device dock, and responsive to receipt of the one-time key from the nomadic device, integrate the nomadic device with the VCS as a driver device.