摘要:
A vision-based object detection decision-making system (10) for a vehicle (12) includes multiple vision sensing systems (14) that have vision receivers (20) and that generate an object detection signal. A controller (16) includes a plurality of sensing system aid modules (18) that correspond to each of the vision sensing systems (14). The controller (16) operates the sensing system aid modules (18) in response to a vehicle parameter and generates a safety system signal in response to the object detection signal. The sensing system aid modules (18) have associated operating modes and operate the vision sensing systems (14) in the operating modes in response to the vehicle parameter.
摘要:
A side-impact control system (10) for a vehicle (12) includes an adaptive restraint (15). A side sensor (30) is configured to detect an object, in a restraint dependent detection zone (60) along a side (13) of the vehicle (12), and generates an object detection signal. A controller (16) determines an activation time for and a deployment status of the adaptive restraint (15), and activates the adaptive restraint (15) before or after contact between the object and the side (13).
摘要:
A vehicle crash safety system (10) for an automotive vehicle has a pre-crash sensing system (17) generating a pre-crash signal, a vehicle dynamics detector (32) generating a vehicle dynamics signal, a pre-crash countermeasure system (40), and a pre-crash controller (12) controlling the pre-crash countermeasure system in response to the pre-crash signal and the vehicle dynamics signal. Vehicle crash safety system (10) also has a coordinated safety system controller (44) coupled to the pre-crash controller (12), an early crash sensing system (46) and an early crash countermeasure system (45). The coordinated safety system controller controls the early crash countermeasure in response to the early crash signal and signals from the pre-crash controller.
摘要:
A vehicle crash safety system includes a pre-crash sensing system generating an object threat assessment and vehicle dynamics data, an occupant sensing system generating occupant characteristic data, and an Occupant Safety Reference Model (OSRM) controller for generating a reference safety restraint deployment profile as a function of the object threat assessment, vehicle dynamics data and occupant characteristic data. An active restraint adaptation (ARA) controller in operative communication with the OSRM controller and a decentralized restraint controller. The ARA controller sends restraint deployment targets, and the safety restraint deployment profile to the decentralized restraint controller. The ARA controller may modify input signals to the decentralized controller based on the real-time occupant position trajectory. The decentralized restraint controller is adapted to operate the restraint system as a function of signals from the ARA controller and real-time occupant-restraint system interactions.
摘要:
A vehicle pre-impact sensing and control system generates tailored adaptive warning signals as a function of driver vehicle use. The tailored signals are used in a vehicle controller for determining appropriate driver warning or safety device activations.
摘要:
A system and method for preemptively sensing an object in the potential drive path of an automotive vehicle and selectively operating both a collision countermeasure system and a parking assistance system aboard the automotive vehicle are disclosed herein. The system includes a radar sensor, ultrasonic sensors, and a data processing system mounted aboard the automotive vehicle. The data processing system is electrically connected to the radar sensor, the ultrasonic sensors, the collision countermeasure system, and the parking assistance system. The sensors are operable to cooperatively sense the position of the object in the potential drive path of the automotive vehicle and accordingly transmit sensor data to the data processing system. The data processing system is operable to receive the sensor data, selectively process the sensor data, and accordingly transmit operating instructions to the collision countermeasure system and the parking assistance system so as to selectively operate both systems.
摘要:
A system and method of controlling deployment of a safety device for a vehicle. The system may include a pre-impact collision assessment system, an impact detection system, and an inflatable safety device. The safety device may be partially inflated when a collision threat is detected based on a signal from the pre-impact collision assessment system. The inflatable device may be subsequently either more fully inflated or deflated.
摘要:
A supplemental impact protection system for an automotive vehicle includes an external energy management structure having a first position for normal vehicle operation and a second position for deployment during an impact event. A mounting system allows selective positioning of the energy management structure in either the first or second position, as determined by a controller which assesses an impact potential of the vehicle and operates the mounting system to move the energy management structure to the second, or deployed, position in the event that the assessed impact potential satisfies a predetermined threshold.
摘要:
A method of operating a vehicle includes determining a pre-crash collision confidence factor and estimating a time to collision. The method further includes deploying a reversible restraint in response to the confidence factor and the time to collision and deploying a non-reversible restraint in response to the confidence factor and the time to collision.
摘要:
A system and method for protecting an occupant in a vehicle seat, through the use of an occupant protection system is disclosed, wherein the vehicle seat includes a backrest section and a seat section. The occupant protection system includes a first airbag assembly having a first inflatable airbag, wherein the first airbag assembly is containable within an airbag recess located within a vehicle roof portion. A second airbag assembly is included having a second inflatable airbag and a deployment location. The second airbag assembly is mounted to a frame that is integrated with the seat while being external to a seat cushion. The first inflatable airbag is configured to extend downward from the roof portion to below a passenger shoulder-thorax protection region while in an inflated state. The second inflatable airbag is configured to extend upward from the deployment location through a passenger pelvic-thorax protection region while in an inflated state.