Abstract:
An integrated device for nucleic acid analysis having a support and a first tank for introducing a raw biological specimen includes at least one pre-treatment channel, a buried amplification chamber, and a detection chamber carried by the support and in fluid connection with one another and with the tank. The device can be used for all types of biological analyses.
Abstract:
A plurality of planar electrodes (5) in a microchannel (4) is used for separation, lysis and PCR in a chip (10). Cells from a sample are brought to the electrodes (5). Depending on sample properties, phase pattern, frequency and voltage of the electrodes and flow velocity are chosen to trap target cells (16) using DEP, whereas the majority of unwanted cells (17) flushes through. After separation the target cell (16) are lysed while still trapped. Lysis is carried out by applying RF pulses and/or thermally so as to change the dielectric properties of the trapped cells. After lysis, the target cells (16) are amplified within the microchannel (4), so as to obtain separation, lysis and PCR on same chip (1).
Abstract:
A micropump includes a body (10) of semiconductor material, accommodating fluid-tight chambers (32), having an internal preset pressure, lower than atmospheric pressure. The fluid-tight chambers (32), sealed by a diaphragm (35) that can be electrically opened, are selectively openable using a first electrode (37) and second electrodes (38), accommodating between them portions of the diaphragm (35).
Abstract:
A plurality of planar electrodes (5) in a microchannel (4) is used for separation, lysis and PCR in a chip (10). Cells from a sample are brought to the electrodes (5). Depending on sample properties, phase pattern, frequency and voltage of the electrodes and flow velocity are chosen to trap target cells (16) using DEP, whereas the majority of unwanted cells (17) flushes through. After separation the target cell (16) are lysed while still trapped. Lysis is carried out by applying RF pulses and/or thermally so as to change the dielectric properties of the trapped cells. After lysis, the target cells (16) are amplified within the microchannel (4), so as to obtain separation, lysis and PCR on same chip (1).
Abstract:
A micropump includes a body (10) of semiconductor material, accommodating fluid-tight chambers (32), having an internal preset pressure, lower than atmospheric pressure. The fluid-tight chambers (32), sealed by a diaphragm (35) that can be electrically opened, are selectively openable using a first electrode (37) and second electrodes (38), accommodating between them portions of the diaphragm (35).
Abstract:
An assaying device includes one or more detectors, a transporter and inlet that is connected to the one or more detectors by a one or more channels. The transporter includes one or more sealed, vacuum-containing chambers being connected to the channels, wherein each of the chambers includes an electrically activated puncture. The puncture is configured to puncture a wall of a chamber and cause a differential pressure in the one ore more channels, and thereby transport a fluid from the inlet to the one or more detectors.
Abstract:
A micropump includes a body (10) of semiconductor material, accommodating fluid-tight chambers (32), having an internal preset pressure, lower than atmospheric pressure. The fluid-tight chambers (32), sealed by a diaphragm (35) that can be electrically opened, are selectively openable using a first electrode (37) and second electrodes (38), accommodating between them portions of the diaphragm (35).
Abstract:
A circuit to control the supply of a reactive load, for supplying variable quantities of energy to the load in a predetermined manner is included in a system. The system also includes reactive components which are connected to the load by way of a controllable electronic switch and which form a resonant circuit with the load when the electronic switch is closed. Further, the system includes a circuit for activating the electronic switch, and a control unit which coordinates the operation of the controlled supply circuit and of the activation circuit in accordance with a predetermined program. The system enables the load to be driven with a particularly low power dissipated.
Abstract:
A circuit to control the supply of a reactive load, for supplying variable quantities of energy to the load in a predetermined manner is included in a system. The system also includes reactive components which are connected to the load by way of a controllable electronic switch and which form a resonant circuit with the load when the electronic switch is closed. Further, the system includes a circuit for activating the electronic switch, and a control unit which coordinates the operation of the controlled supply circuit and of the activation circuit in accordance with a predetermined program. The system enables the load to be driven with a particularly low power dissipated.
Abstract:
An interactive method for monitoring road traffic consisting of detecting, using a short-range receiver installed on a vehicle, the presence of preceding vehicles in the same running direction and their dynamic conditions, as transmitted by the preceding vehicles, in the form of binary coded periodic message at nonoverlapped time windows for each vehicle. The method further consists of transmitting, to the following vehicles using a short-range transmitter installed on the vehicle, a binary coded message indicating the presence of the vehicle and, optionally, dynamic conditions of the preceding vehicles, at time windows non-overlapping the transmission time windows of the preceding vehicles.