摘要:
One embodiment of the present invention provides a system that avoids locks by transactionally executing critical sections. During operation, the system receives a program which includes one or more critical sections which are protected by locks. Next, the system modifies the program so that the critical sections which are protected by locks are executed transactionally without acquiring locks associated with the critical sections. More specifically, the program is modified so that: (1) during transactional execution of a critical section, the program first determines if a lock associated with the critical section is held by another process and if so aborts the transactional execution; (2) if the transactional execution of the critical section completes without encountering an interfering data access from another process, the program commits changes made during the transactional execution and optionally resumes normal non-transactional execution of the program past the critical section; and (3) if an interfering data access from another process is encountered during transactional execution of the critical section, the program discards changes made during the transactional execution, and attempts to re-execute the critical section zero or more times.
摘要:
One embodiment of the present invention provides a system that facilitates selectively unmarking load-marked cache lines during transactional program execution, wherein load-marked cache lines are monitored during transactional execution to detect interfering accesses from other threads. During operation, the system encounters a release instruction during transactional execution of a block of instructions. In response to the release instruction, the system modifies the state of cache lines, which are specially load-marked to indicate they can be released from monitoring, to account for the release instruction being encountered. In doing so, the system can potentially cause the specially load-marked cache lines to become unmarked. In a variation on this embodiment, upon encountering a commit-and-start-new-transaction instruction, the system modifies load-marked cache lines to account for the commit-and-start-new-transaction instruction being encountered. In doing so, the system causes normally load-marked cache lines to become unmarked, while other specially load-marked cache lines may remain load-marked past the commit-and-start-new-transaction instruction.
摘要:
One embodiment of the present invention provides a system for releasing a memory location from transactional program execution. The system operates by executing a sequence of instructions during transactional program execution, wherein memory locations involved in the transactional program execution are monitored to detect interfering accesses from other threads, and wherein changes made during transactional execution are not committed until transactional execution completes without encountering an interfering data access from another thread. Upon encountering a release instruction for a memory location during the transactional program execution, the system modifies state information within the processor to release the memory location from monitoring. The system also executes a commit-and-start-new-transaction instruction, wherein the commit-and-start-new-transaction instruction atomically commits the transaction's stores, thereby removing them from the transaction's write set while the transaction's read set remains unaffected.
摘要:
One embodiment of the present invention provides a system that facilitates selectively unmarking load-marked cache lines during transactional program execution, wherein load-marked cache lines are monitored during transactional execution to detect interfering accesses from other threads. During operation, the system encounters a release instruction during transactional execution of a block of instructions. In response to the release instruction, the system modifies the state of cache lines, which are specially load-marked to indicate they can be released from monitoring, to account for the release instruction being encountered. In doing so, the system can potentially cause the specially load-marked cache lines to become unmarked. In a variation on this embodiment, upon encountering a commit-and-start-new-transaction instruction, the system modifies load-marked cache lines to account for the commit-and-start-new-transaction instruction being encountered. In doing so, the system causes normally load-marked cache lines to become unmarked, while other specially load-marked cache lines may remain load-marked past the commit-and-start-new-transaction instruction.
摘要:
A processor includes a device providing a throttling power output signal. The throttling power output signal is used to determine when to logically throttle the power consumed by the processor. At least one core in the processor includes a pipeline having a decode pipe; and a logical power throttling unit coupled to the device to receive the output signal, and coupled to the decode pipe. Following the logical power throttling unit receiving the power throttling output signal satisfying a predetermined criterion, the logical power throttling unit causes the decode pipe to reduce an average number of instructions decoded per processor cycle without physically changing the processor cycle or any processor supply voltages.
摘要:
A register file, in a processor, includes a first plurality of registers of a first size, n-bits. A decoder uses a mapping that divides the register file into a second plurality M of registers having a second size. Each of the registers having the second size is assigned a different name in a continuous name space. Each register of the second size includes a plurality N of registers of the first size, n-bits. Each register in the plurality N of registers is assigned the same name as the register of the second size that includes that plurality. State information is maintained in the register file for each n-bit register. The dependence of an instruction on other instructions is detected through the continuous name space. The state information allows the processor to determine when the information in any portion, or all, of a register is valid.
摘要:
Embodiments of the present invention provide a system for executing program code on a processor. In these embodiments, the processor is configured to start by using a primary strand to execute program code. Upon detecting a predetermined condition, the processor is configured to instantaneously checkpoint an architectural state of the primary strand and then use the subordinate strand to copy the checkpointed state to memory while using the primary strand to continue executing the program code without interruption.
摘要:
One embodiment of the present invention provides a system that prevents data hazards during simultaneous speculative threading. The system starts by executing instructions in an execute-ahead mode using a first thread. While executing instructions in the execute-ahead mode, the system maintains dependency information for each register indicating whether the register is subject to an unresolved data dependency. Upon the resolution of a data dependency during execute-ahead mode, the system copies dependency information to a speculative copy of the dependency information. The system then commences execution of the deferred instructions in a deferred mode using a second thread. While executing instructions in the deferred mode, if the speculative copy of the dependency information for a destination register indicates that a write-after-write (WAW) hazard exists with a subsequent non-deferred instruction executed by the first thread in execute-ahead mode, the system uses the second thread to execute the deferred instruction to produce a result and forwards the result to be used by subsequent deferred instructions without committing the result to the architectural state of the destination register. Hence, the system makes the result available to the subsequent deferred instructions without overwriting the result produced by a following non-deferred instruction.
摘要:
One embodiment of the present invention provides a system which creates multiple checkpoints in a processor that supports speculative-execution. The system starts by issuing instructions for execution in program order during execution of a program in a normal-execution mode. Upon encountering a launch condition during an instruction which causes a processor to enter execute-ahead mode, the system performs an initial checkpoint and commences execution of instructions in execute-ahead mode. Upon encountering a predefined condition during execute-ahead mode, the system generates an additional checkpoint and continues to execute instructions in execute-ahead mode. Generating the additional checkpoint allows the processor to return to the additional checkpoint, instead of the previous checkpoint, if the processor subsequently encounters a condition that requires the processor to return to a checkpoint.
摘要:
One embodiment of the present invention provides a system that enforces memory reference ordering requirements, such as Total Store Ordering (TSO), at a Level 1 (L1) cache in a multiprocessor. During operation, while executing instructions in a speculative-execution mode, the system receives an invalidation signal for a cache line at the L1 cache wherein the invalidation signal is received from a cache-coherence system within the multiprocessor. In response to the invalidation signal, if the cache line exists in the L1 cache, the system examines a load-mark in the cache line, wherein the load-mark being set indicates that the cache line has been loaded from during speculative execution. If the load-mark is set, the system fails the speculative-execution mode and resumes a normal-execution mode from a checkpoint. By failing the speculative-execution mode, the system ensures that a potential update to the cache line indicated by the invalidation signal will not cause the memory reference ordering requirements to be violated during the speculative-execution mode.