摘要:
A curable liquid formulation containing at least (i) one or more near-infrared absorbing triphenylamine-based dyes, and (ii) one or more casting solvents. The invention is also directed to solid near-infrared absorbing films composed of crosslinked forms of the curable liquid formulation. The invention is also directed to a microelectronic substrate containing a coating of the solid near-infrared absorbing film as well as a method for patterning a photoresist layer coated on a microelectronic substrate in the case where the near-infrared absorbing film is between the microelectronic substrate and a photoresist film.
摘要:
A curable liquid formulation containing at least (i) one or more near-infrared absorbing triphenylamine-based dyes, and (ii) one or more casting solvents. The invention is also directed to solid near-infrared absorbing films composed of crosslinked forms of the curable liquid formulation. The invention is also directed to a microelectronic substrate containing a coating of the solid near-infrared absorbing film as well as a method for patterning a photoresist layer coated on a microelectronic substrate in the case where the near-infrared absorbing film is between the microelectronic substrate and a photoresist film.
摘要:
A curable liquid formulation containing at least (i) one or more near-infrared absorbing triphenylamine-based dyes, and (ii) one or more casting solvents. The invention is also directed to solid near-infrared absorbing films composed of crosslinked forms of the curable liquid formulation. The invention is also directed to a microelectronic substrate containing a coating of the solid near-infrared absorbing film as well as a method for patterning a photoresist layer coated on a microelectronic substrate in the case where the near-infrared absorbing film is between the microelectronic substrate and a photoresist film.
摘要:
A curable liquid formulation containing at least (i) one or more near-infrared absorbing triphenylamine-based dyes, and (ii) one or more casting solvents. The invention is also directed to solid near-infrared absorbing films composed of crosslinked forms of the curable liquid formulation. The invention is also directed to a microelectronic substrate containing a coating of the solid near-infrared absorbing film as well as a method for patterning a photoresist layer coated on a microelectronic substrate in the case where the near-infrared absorbing film is between the microelectronic substrate and a photoresist film.
摘要:
A curable liquid formulation comprising: (i) one or more near-infrared absorbing polymethine dyes; (ii) one or more crosslinkable polymers; and (iii) one or more casting solvents. The invention is also directed to solid near-infrared absorbing films composed of crosslinked forms of the curable liquid formulation. The invention is also directed to a microelectronic substrate containing a coating of the solid near-infrared absorbing film as well as a method for patterning a photoresist layer coated on a microelectronic substrate in the case where the near-infrared absorbing film is between the microelectronic substrate and a photoresist film.
摘要:
A curable liquid formulation comprising: (i) one or more near-infrared absorbing polymethine dyes; (ii) one or more crosslinkable polymers; and (iii) one or more casting solvents. The invention is also directed to solid near-infrared absorbing films composed of crosslinked forms of the curable liquid formulation. The invention is also directed to a microelectronic substrate containing a coating of the solid near-infrared absorbing film as well as a method for patterning a photoresist layer coated on a microelectronic substrate in the case where the near-infrared absorbing film is between the microelectronic substrate and a photoresist film.
摘要:
A composition comprising (A) a near-infrared absorbing dye of formula (1), (B) a polymer, and (C) a solvent is used to form a near-infrared absorptive layer. In formula (1), R1 and R2 are a monovalent hydrocarbon group which may contain a heteroatom, k is 0 to 5, m is 0 or 1, n is 1 or 2, Z is oxygen, sulfur or C(R′)(R″), R′ and R″ are hydrogen or a monovalent hydrocarbon group which may contain a heteroatom, and X− is an anion.
摘要:
A near-infrared absorptive layer is formed from a composition comprising (A) an acenaphthylene polymer, (B) a near-infrared absorbing dye, and (C) a solvent. When a multilayer film comprising the near-infrared absorptive layer and a photoresist layer is used in optical lithography, the detection accuracy of optical auto-focusing is improved, allowing the optical lithography to produce a definite projection image with an improved contrast and succeeding in forming a better photoresist pattern.
摘要:
A composition comprising a polymer comprising repeat units selected from formulae (1) to (4), an aromatic ring-containing polymer, a near-infrared absorbing dye, and a solvent is used to form a near-infrared absorptive film. R1, R7, R9, and R14 are H, methyl, fluorine or trifluoromethyl, R2 to R6 are H, F, trifluoromethyl, —C(CF3)2OR16, alkyl or alkoxy, at least one of R2 to R6 being F or a fluorinated group, R16, R8 and R13 are H or a monovalent organic group, L1 is a single bond or —C(═O)O—, m is 0 or 1, L2 is a di- or trivalent hydrocarbon group, n is 1 or 2, R10 to R12 are H, hydroxyl, halogen or a monovalent organic group, and R15 is a fluorinated C2-C15 hydrocarbon group.
摘要:
The present invention relates to a near-infrared (NIR) film composition for use in vertical alignment and correction in the patterning of integrated semiconductor wafers and a pattern forming method using the composition. The NIR absorbing film composition includes a NIR absorbing dye having a polymethine cation and a crosslinkable anion, a crosslinkable polymer and a crosslinking agent. The patterning forming method includes aligning and focusing a focal plane position of a photoresist layer by sensing near-infrared emissions reflected from a substrate containing the photoresist layer and a NIR absorbing layer formed from the NIR absorbing film composition under the photoresist layer. The NIR absorbing film composition and the pattern forming method are especially useful for forming material patterns on a semiconductor substrate having complex buried topography.