摘要:
A mass or mass to charge ratio selective ion trap is disclosed which directs ions into a small ejection region. A RF voltage acts to confine ions in a first (y) direction within the ion trap. A DC or RF voltage acts to confine ions in a second (x) direction. A quadratic DC potential well acts to confine ions in a third (z) direction within the ion trap. The profile of the quadratic DC potential well progressively varies along the second (x) direction.
摘要:
Ions having a restricted range of mass to charge ratios are transmitted to the acceleration region of a Time of Flight mass analyzer. A control system applies a first extraction pulse to an acceleration electrode in order to accelerate a first group of ions into the time of flight region at a first time T1, wherein ions having the lowest mass to charge ratio in the first group of ions have a time of flight ΔT1min through the time of flight region and ions having the highest mass to charge ratio in the first group of ions have a time of flight ΔT1max through the time of flight region. The control system applies a second extraction pulse to the acceleration electrode at a subsequent second time T2, wherein ΔT1max−ΔT1min≦T2−T1
摘要:
An ion mobility separator or spectrometer is disclosed comprising an inner cylinder and an outer cylinder defining an annular volume through which ions are transmitted. Spiral electrodes a-f are arranged on a surface of the inner cylinder and/or on a surface of the outer cylinder. A first device is arranged and adapted to maintain a DC electric field or a pseudo-potential force which acts to urge ions from a first end of the ion mobility separator or spectrometer to a second end of the ion mobility separator or spectrometer. A second device is arranged and adapted to apply one or more transient DC voltages to the spiral electrodes in order to urge ions towards the first end of the ion mobility separator or spectrometer. The net effect is to extend the effective path length of the ion mobility separator.
摘要:
A mass spectrometer includes a first ion trap arranged upstream of an analytical second ion trap. The charge capacity of the first ion trap is set at a value such that if all the ions stored within the first ion trap up to the charge capacity limit of the first ion trap are then transferred to the second ion trap, then the analytical performance of the second ion trap is not substantially degraded due to space charge effects.
摘要:
A mass spectrometer is provided comprising a first ion trap (2) arranged upstream of an analytical second ion trap (5). The charge capacity of the first ion trap (2) is set at a value such that if all the ions stored within the first ion trap (2) up to the charge capacity limit of the first ion trap (2) are then transferred to the second ion trap (5), then the analytical performance of the second ion trap (5) is not substantially degraded due to space charge effects.
摘要:
A method of mass spectrometry is disclosed wherein voltage signals from an ion detector are analysed. A second differential of each voltage signal is obtained and the start and end times of observed voltage peaks are determined. The intensity and average time of each voltage peak is then determined and the intensity and time values are stored. An intermediate composite mass spectrum is then formed by combining the intensity and time values which relate to each voltage peak observed from multiple experimental runs. The various pairs of time and intensity data are then integrated to produce a smooth continuum mass spectrum. The continuum mass spectrum may then be further processed by determining the second differential of the continuum mass spectrum. The start and end times of mass peaks observed in the continuum mass spectrum may be determined. The intensity and mass to charge ratio of each mass peak observed in the continuum mass spectrum may then determined. A final discrete mass spectrum comprising just of an intensity value and mass to charge ratio per species of ion may then be displayed or output.
摘要:
A mass or mass to charge ratio selective ion trap is disclosed which directs ions into a small ejection region. A RF voltage acts to confine ions in a first (y) direction within the ion trap. A DC or RF voltage acts to confine ions in a second (x) direction. A quadratic DC potential well acts to confine ions in a third (z) direction within the ion trap. The profile of the quadratic DC potential well progressively varies along the second (x) direction.
摘要:
A mass or mass to charge ratio selective ion trap is disclosed having an increased charge storage capacity. A RF voltage acts to confine ions in a first (y) direction within the ion trap. A DC voltage and/or an RF voltage acts to confine ions in a second (x) direction within the ion trap. A quadratic DC potential well acts to confine ions in a third (z) direction within the ion trap. Ions are excited in the third (z) direction and are caused to be mass or mass to charge ratio selectively ejected in the third (z) direction.
摘要:
A method of mass spectrometry is disclosed wherein a signal output from an ion detector is digitised by an Analogue to Digital Converter and is then deconvoluted to determine one or more ion arrival times and one more ion arrival intensities. The process of deconvoluting the ion signal involves determining a point spread function characteristic of an ion arriving at and being detected by the ion detector. A distribution of ion arrival times which produces a best fit to the digitised signal is then determined given that each ion arrival is assumed to produce a response given by the point spread function. A plurality of ion arrival times are then combined to produce a composite ion arrival time-intensity spectrum.
摘要:
A mass spectrometer is disclosed wherein an ion beam attenuator is arranged upstream of an ion trap mass analyser. An ion tunnel ion trap comprising an upstream ion accumulation section and a downstream ion accumulation section is arranged upstream of the ion beam attenuator. Ions are released from the ion tunnel ion trap and the intensity of the ion beam which is transmitted to the ion trap analyser is controlled by the ion beam attenuator. The fill time during which ions are admitted into the ion trap mass analyser remains substantially constant and is substantially independent of the intensity of the ion beam.