摘要:
A display arranged with, in a matrix way, signal lines for providing brightness information to each of pixels, and scanning lines for selecting, in a predetermined cycle, pixels to be provided with brightness information; intake of the brightness information to each of the pixels being executed by intake of signal voltage of the signal lines via thin-film transistors in each of said pixels, in selecting the scanning lines connected with each of the pixels; and having pixels of n-lines and m-rows, by which the brightness information taken into each of the pixels is retained by capacity thereof, even after the scanning lines connected with each of the pixels become a non-selection state, wherein each of the pixels of each line is provided with at least one semiconductor layer that is common between each of the pixels, and the semiconductor layer is formed in parallel to said signal lines.
摘要:
It is an object of the present invention to prevent degradation of an organic semiconductor film caused in forming an alignment layer and to inexpensively provide a liquid crystal display device with a high-performance organic thin film transistor. According to the invention, in a liquid crystal display device that includes: a thin film transistor substrate having such members as a thin film transistor composed of a gate electrode, a gate insulating film, source/drain electrodes, and a semiconductor layer, a line, and a pixel electrode; and an opposing substrate supporting a liquid crystal layer between the thin film transistor substrate and the opposing substrate, no alignment layer having a function of controlling alignment of molecules in the liquid crystal layer is interposed between the semiconductor layer and the liquid crystal layer.
摘要:
A thin-film transistor includes an insulating substrate, a source electrode, and a drain electrode, disposed over the top of the insulating substrate, a semiconductor layer electrically continuous with the source electrode, and the drain electrode, respectively, a gate dielectric film formed over the top of at least the semiconductor layer; and a gate electrode disposed over the top of the gate dielectric film so as to overlap the semiconductor layer. Further, a first bank insulator is formed so as to overlie the source electrode, a second bank insulator is formed so as to overlie the drain electrode, and the semiconductor layer, the gate dielectric film, and the gate electrode are embedded in a region between the first bank insulator, and the second bank insulator.
摘要:
A thin-film transistor includes an insulating substrate, a source electrode, and a drain electrode, disposed over the top of the insulating substrate, a semiconductor layer electrically continuous with the source electrode, and the drain electrode, respectively, a gate dielectric film formed over the top of at least the semiconductor layer; and a gate electrode disposed over the top of the gate dielectric film so as to overlap the semiconductor layer. Further, a first bank insulator is formed so as to overlie the source electrode, a second bank insulator is formed so as to overlie the drain electrode, and the semiconductor layer, the gate dielectric film, and the gate electrode are embedded in a region between the first bank insulator, and the second bank insulator.
摘要:
An object of the present invention is to provide a semiconductor device such as a display device, ID tag, sensor or the like at low cost by using a bottom contact type organic TFT as a switching element. In the present invention, the semiconductor layer of the bottom contact type organic TFT is formed of a polycrystalline material, and the taper width of each of the source and drain electrodes of the TFT in the direction of the channel length is smaller than the average particle size of semiconductor crystals grown on the source and drain electrodes. Alternatively, the side on the channel side of each of the source and drain electrodes of the bottom contact type organic TFT is formed so as to be convex upward with respect to the substrate surface. Alternatively, an organic compound layer different from the semiconductor layer of the bottom contact type organic TFT is made present between each of the source and drain electrodes of the bottom contact type organic TFT and said semiconductor layer, in a thickness of not more than 10 Å and not less than 1 Å.
摘要:
The present invention aims at providing a high-performance semiconductor device such as display, IC tag, sensor or the like at a low cost by using an organic thin film transistor most members of which can be formed by printing, as a switching element. The present invention relates to a thin film transistor composed of members on a dielectric substrate, which are a gate electrode, a dielectric film, source/drain electrodes, and a semiconductor layer, wherein on said semiconductor layer there are formed at least two passivation films of a first passivation film capping said semiconductor layer to protect it and a second passivation film covering larger area than that of said first passivation film to protect all of said members.
摘要:
The present invention aims at providing a high-performance semiconductor device such as display, IC tag, sensor or the like at a low cost by using an organic thin film transistor most members of which can be formed by printing, as a switching element. The present invention relates to a thin film transistor composed of members on a dielectric substrate, which are a gate electrode, a dielectric film, source/drain electrodes, and a semiconductor layer, wherein on said semiconductor layer there are formed at least two passivation films of a first passivation film capping said semiconductor layer to protect it and a second passivation film covering larger area than that of said first passivation film to protect all of said members.
摘要:
An object of the present invention is to provide a semiconductor device such as a display device, ID tag, sensor or the like at low cost by using a bottom contact type organic TFT as a switching element. In the present invention, the semiconductor layer of the bottom contact type organic TFT is formed of a polycrystalline material, and the taper width of each of the source and drain electrodes of the TFT in the direction of the channel length is smaller than the average particle size of semiconductor crystals grown on the source and drain electrodes. Alternatively, the side on the channel side of each of the source and drain electrodes of the bottom contact type organic TFT is formed so as to be convex upward with respect to the substrate surface. Alternatively, an organic compound layer different from the semiconductor layer of the bottom contact type organic TFT is made present between each of the source and drain electrodes of the bottom contact type organic TFT and said semiconductor layer, in a thickness of not more than 10 Å and not less than 1 Å.
摘要:
A liquid film applicator means can apply a photosensitive lyophobic film 18 to a substrate 16. An exposure unit 10 is placed on the back side of the substrate and forms the lyophobic film applied on the substrate into a pattern in alignment with gate electrodes 13. A dropping unit 55 drops a test liquid to a surface of the substrate having a pattern of the lyophobic film formed by the exposure means. A measuring means 58 detects the droplet dropped by the dropping unit. A determining means determines whether the pattern of the lyophobic film formed by the exposure means is proper or not based on the droplet detected by the detecting means.
摘要:
A liquid film applicator means can apply a photosensitive lyophobic film 18 to a substrate 16. An exposure unit 10 is placed on the back side of the substrate and forms the lyophobic film applied on the substrate into a pattern in alignment with gate electrodes 13. A dropping unit 55 drops a test liquid to a surface of the substrate having a pattern of the lyophobic film formed by the exposure means. A measuring means 58 detects the droplet dropped by the dropping unit. A determining means determines whether the pattern of the lyophobic film formed by the exposure means is proper or not based on the droplet detected by the detecting means.