摘要:
Disclosed is a carbon nanotube-loaded inorganic particle which exhibits excellent reinforcing performance when blended in resins or the like. Specifically disclosed is a carbon nanotube-loaded inorganic particle characterized in that the surface of an inorganic particle is loaded with carbon nanotubes. This carbon nanotube-loaded inorganic particle can be produced by loading the surface of a fiber-like or plate-like inorganic particle of potassium titanate or wollastonite with fine particles of an iron catalyst and growing carbon nanotubes on the surface of the inorganic particle by a polystyrene method or the like.
摘要:
The present invention provides a combustion-based method and apparatus for producing and isolating carbon nanotubes. The nanotubes are formed when hot combustion gases are contacted with a catalytic surface, which is readily separated from the catalyst support and subsequently dissolved. The process is suitable for large-scale manufacture of carbon nanotubes.
摘要:
Carbon nanotubes are more efficiently produced with a simpler apparatus. The process, which is for producing carbon nanotubes by the combustion method, is characterized by comprising: a step in which a catalyst-supporting powder comprising a base powder and a catalyst supported on the surface thereof is prepared; a step in which the catalyst-supporting powder is deposited on a porous support (2) having through-holes through which a flame passes, so that the powder particles are held in the through-holes without tenaciously adhering to one another; a step in which the porous support (2) having the catalyst-supporting powder held thereon is disposed in a combustion oven (1) in which one end (1b) is open; and a step in which a carbon-containing flame is generated in a burner part (3) disposed at the other end (1a) of the combustion oven (1) and the flame is fed to the through-holes of the porous support (2) to produce carbon nanotubes on the surface of the catalyst-supporting powder present in the through-holes.
摘要:
The invention provides novel metal oxide particles on which carbon nanotubes are supported. Needle- or flake-like crystalline metal oxide particles characterized in that carbon nanotubes grown parallel to each other in the direction nearly perpendicular to the surface of each particle are supported on the surfaces of the particles and that the carbon nanotubes supported on the particles are 1 to 500 μm in length in the direction nearly perpendicular to the surface of each particle.
摘要:
To efficiently and easily manufacture carbon nanotubes oriented in one direction. A method for manufacturing carbon nanotubes is characterized by including the steps of: bringing crystalline metal oxide particles into contact with a solution containing metal ions serving as a catalyst for forming carbon nanotubes, thereby attaching the catalyst to the surfaces of the metal oxide particles; subjecting the surfaces of the metal oxide particles to which the catalyst is attached to a CVD method or a combustion method, thereby forming carbon nanotubes on the surface of each of the metal oxide particles and resulting in producing metal oxide particles each supporting carbon nanotubes grown substantially perpendicularly to the surface of the metal oxide particle and in parallel with each other; and removing metal oxide particles from the metal oxide particles supporting carbon nanotubes.
摘要:
The subject invention provides a stable mass production method of carbon nano structure at low cost immune to variation of particle diameter of the catalyst microparticle in the catalyst material. The subject invention also provides a production device used for the method, and a new carbon nano structure having a conformation suitable for the mass production. The production method of carbon nano structure comprising fluidizing a material gas and catalyst microparticles in the reactor so that the material gas and the catalyst microparticles are brought into contact with each other, wherein said catalyst microparticles are suspended by the instantaneous spraying of the high-pressure gas, and then the suspension effect of the catalyst microparticles is stopped so that the catalyst microparticles naturally fall. The particle diameter of the catalyst microparticles is thus selected. With this arrangement, only the selected catalyst microparticles with the desired diameter are supplied to the reactor. Since this arrangement is immune to influence of variation in particle diameter of catalyst microparticles contained in the catalyst material, it achieves stable mass production of carbon nano structure at low cost.
摘要:
A method for synthesizing carbon nanocoils with high efficiency, by determining the structure of carbon nuclei that have been attached to the ends of carbon nanocoils and thus specifying a true catalyst for synthesizing carbon nanocoils is implemented. The catalyst for synthesizing carbon nanocoils according to the present invention is a carbide catalyst that contains at least elements (a transition metal element, In, C) or (a transition metal element, Sn, C), and in particular, it is preferable for the transition metal element to be Fe, Co or Ni. In addition to this carbide catalyst, a metal catalyst of (Fe, Al, Sn) and (Fe, Cr, Sn) are effective. From among these, catalysts such as Fe3InC0.5, Fe3InC0.5Snw and Fe3SnC are particularly preferable. The wire diameter and the coil diameter can be controlled by using a catalyst where any of these catalysts is carried by a porous carrier.
摘要翻译:通过确定已经附着在碳纳米线的末端上的碳原子核的结构,从而确定了用于合成碳纳米线的真正的催化剂,实现了高效合成碳纳米线的方法。 根据本发明的用于合成碳纳米薄膜的催化剂是至少含有元素(过渡金属元素,In,C)或(过渡金属元素Sn,C)的碳化物催化剂,特别地,优选 过渡金属元素为Fe,Co或Ni。 除了这种碳化物催化剂之外,(Fe,Al,Sn)和(Fe,Cr,Sn)的金属催化剂是有效的。 其中,诸如Fe 3 N 3 C 5 N 3,Fe 3 InCl 0.5 Snw和Fe 3 O 3的催化剂, 3 SnC是特别优选的。 线径和线圈直径可以通过使用其中任何这些催化剂由多孔载体承载的催化剂来控制。
摘要:
Developed is high-efficiency synthesis method and apparatus capable of promoting the initial growth of carbon nanostructure by eliminating the initial fluctuation time and rising time in raw gas flow quantity.-A high-efficiency synthesis method of carbon nanostructure according to the present invention is a high-efficiency synthesis method of carbon nanostructure, the method comprising: bringing raw material gas and a catalyst into contact with each other under reactive conditions so as to produce a carbon nanostructure, wherein: the initiation of contact of the raw material gas with the catalyst is carried out instantaneously. Reaction conditions such as temperature and raw material gas concentration are set so as to meet those for catalyst growth, and under the reaction conditions, the initiation of contact of raw material gas G with catalyst 6 is carried out instantaneously. Consequently, the initial growth of carbon nanostructure is positively carried out, and the height growth and thickness growth thereof can be effected in high efficiency. Further, high-density growth and short-time high-speed growth can be realized. The catalyst includes any forms of catalyst such as catalyst substrate, catalyst structure, catalyst powders and catalyst pellet. It is especially preferred to employ a system wherein the feed and interruption of the raw material gas G are intermittently controlled by means of an electromagnetic three-way valve 24.
摘要:
Developed is high-efficiency synthesis method and apparatus capable of promoting the initial growth of carbon nanostructure by eliminating the initial fluctuation time and rising time in raw gas flow quantity.A high-efficiency synthesis method of carbon nanostructure according to the present invention is a high-efficiency synthesis method of carbon nanostructure, the method comprising: bringing raw material gas and a catalyst into contact with each other under reactive conditions so as to produce a carbon nanostructure, wherein: the initiation of contact of the raw material gas with the catalyst is carried out instantaneously. Reaction conditions such as temperature and raw material gas concentration are set so as to meet those for catalyst growth, and under the reaction conditions, the initiation of contact of raw material gas G with catalyst 6 is carried out instantaneously. Consequently, the initial growth of carbon nanostructure is positively carried out, and the height growth and thickness growth thereof can be effected in high efficiency. Further, high-density growth and short-time high-speed growth can be realized. The catalyst includes any forms of catalyst such as catalyst substrate, catalyst structure, catalyst powders and catalyst pellet. It is especially preferred to employ a system wherein the feed and interruption of the raw material gas G are intermittently controlled by means of an electromagnetic three-way valve 24.
摘要:
A material gas and a catalyst are introduced through a material supplying tube path and a catalyst supplying tube path together with a carrier gas into a reactor equipped on its outer periphery with a heat applicator for thermally decomposing the material gas. The reactor has a convention regulator fitted to the discharge end of the catalyst supplying tube path. The convection regulator covers an edge side of the reactor to regulate gas flow in the reactor so that the flow does not reach the edge side. Due to this, a convection state can be efficiently produced in a reaction region. Consequently, it becomes possible to prevent contamination defect caused by accumulation/adherence of concretion of catalyst, which was generated by aggregation of cooled catalyst in the low-temperature region of the reactor and a decomposition product of the material gas. Thus the efficiency of carbon nanostructure production can be improved.