摘要:
A semiconductor laser device comprises an n-type cladding layer, an active layer formed on the n-type cladding layer and having a quantum well structure including one or a plurality of quantum well layers, a p-type cladding layer comprising a flat portion formed on the active layer and a stripe-shaped ridge portion on the flat portion, and a current blocking layer formed on the flat portion so as to cover the side surface of the ridge portion and formed on a region on the upper surface of the ridge portion from one of facets of a cavity to a position at a predetermined distance therefrom.
摘要:
On an n-type GaAs semiconductor substrate, an n-type cladding layer formed of AlGaInP system crystal almost in lattice matching with the semiconductor substrate, an active layer and a p-type cladding layer formed of AlGaInP system crystal almost in lattice matching with the semiconductor substrate are formed, and a p-type barrier cladding layer formed of AlGaInP system crystal or AlInP system crystal is provided in the p-type cladding layer. The p-type barrier cladding layer has a thickness through which electrons are almost not transmitted, has tensile strain, and also has band gap energy larger than that of the p-type cladding layer.
摘要:
A six-segment holographic surface is divided into regions by dividing lines. A four-segment photodetection part is divided into four photodetection parts equal in area by a section line substantially parallel to the radial direction of an optical disk and a section line orthogonal thereto. A main light beam diffracted in the regions of the six-segment holographic surface are condensed as spots at positions apart from each other on opposite sides on a section line of the four photodetection parts, and the main beam diffracted in the regions is condensed as spots in the center of the photodetection parts of the four-segment photodetection part.
摘要:
In the solar cell module 1, one finger electrode 30 is branched into multiple branched portions 30a in an intersecting region α where the one finger electrode 30 intersects a conductive body including a wiring member 40 configured to collect photo-generated carriers from the finger electrode 30.
摘要:
Imperfect filling sometimes occurs when a conductive material is filled into a through-hole formed on a solar cell. A method of manufacturing a solar cell of the invention employs a support wherein a conductive material is filled into a through-hole. Accordingly, it is possible to suppress occurrence of imperfect filling and thereby provide a method of manufacturing a solar cell with enhanced reliability. Moreover, a flat surface is provided on a solar cell of the present invention when a connector electrode is formed on a through-hole and this enables enhanced connection reliability.
摘要:
Imperfect filling sometimes occurs when a conductive material is filled into a through-hole formed on a solar cell. A method of manufacturing a solar cell of the invention employs a support wherein a conductive material is filled into a through-hole. Accordingly, it is possible to suppress occurrence of imperfect filling and thereby provide a method of manufacturing a solar cell with enhanced reliability. Moreover, a flat surface is provided on a solar cell of the present invention when a connector electrode is formed on a through-hole and this enables enhanced connection reliability.