Abstract:
Disclosed herein are novel devices comprising small, ultra-low power microelectronic components. In some instances, the microelectronic components is combined with a biosensor component that enables in situ detection of biomolecules. Also disclosed herein are methods of detecting signal analytes and methods of monitoring the health of a patient using these novel devices.
Abstract:
Provided herein, in some aspects, are tools (e.g., methods, compositions and nucleic acids) for building genetic circuits in Bacteroides and Parabacteroides bacteria, as well as the bacteria containing the genetic circuits.
Abstract:
The present disclosure provides, in some aspects, versatile intestinal protein delivery systems deploying engineered human gut commensals of the Bacteroides species to secrete heterologous, therapeutic proteins via outer membrane vesicles (OMVs).
Abstract:
Provided herein, in some aspects, are tools (e.g., methods, compositions and nucleic acids) for building genetic circuits in Bacteroides and Parabacteroides bacteria, as well as the bacteria containing the genetic circuits.
Abstract:
Various aspects and embodiments of the invention are directed to methods and compositions for reversing antibiotic resistance or virulence in and/or destroying pathogenic microbial cells such as, for example, pathogenic bacterial cells. The methods include exposing microbial cells to a delivery vehicle with at least one nucleic acid encoding an engineered autonomously distributed circuit that contains a programmable nuclease targeted to one or multiple genes of interest.
Abstract:
Provided herein are microorganisms engineered with heme-responsive transcription factors and genetic circuits. Also provided are methods for using engineered microorganisms to sense bleeding events and treat bleeding in vivo.