Abstract:
Method and apparatus for gasifying carbonaceous material, in which (a) product gas and ash, residual carbon a gasified tar compounds entrained therewith are discharged from a gasifying reactor to a product gas channel and cooled in a gas cooler, whereby tar compounds condense in a liquid state and tend to stick on heat surfaces; (b) solids containing ash particles and residual carbon separated from the gasification system, preferably from its product gas, are supplied to an ash reactor, in which the residual carbon reacts with oxygen and ash particles and exhaust gas is generated; and (c) ash particles are supplied to the gas cooler or upstream from the gas cooler, whereby the ash content entrained with the product gas increases and the sticking of condensing tar compounds on the heat surfaces decreases.
Abstract:
A method of and an apparatus for gasifying carbonaceous material, the apparatus including a gasification reactor, to which oxygen-containing primary gas and secondary gasification gas are introduced, whereby a portion of the material to be gasified is gasified to product gas, residual carbon contained in the fly ash extracted from the product gas is combusted in a cyclone combustor, and the exhaust gas from the cyclone combustor is guided to above the bottom level of the gasification reactor to act as secondary gasification gas.
Abstract:
A method of and an apparatus for gasifying carbonaceous material, the apparatus including a gasification reactor, to which oxygen-containing primary gas and secondary gasification gas are introduced, whereby a portion of the material to be gasified is gasified to product gas, residual carbon contained in the fly ash extracted from the product gas is combusted in a cyclone combustor, and the exhaust gas from the cyclone combustor is guided to above the bottom level of the gasification reactor to act as secondary gasification gas.
Abstract:
A method and an apparatus for gasifying carbonaceous material, in which (a) gasifying carbonaceous material is gasified in a gasification reactor of a gasification system to produce a product gas, (b) the product gas, ash particles entrained with the product gas, residual carbon, and gasified tar compounds are discharged from the gasification reactor to a product gas channel, (c) the product gas discharged from the gasification reactor is cooled using a gas cooler disposed along the product gas channel, so that the tar compounds are condensed to a liquid from that tends to stick to heat exchange surfaces of the gas cooler, (d) solid material including the ash particles and the residual carbon is separated from the gasification system, (e) the solid material separated from the gasification system is guided to an ash reactor, and oxygen-containing gas is supplied to the ash reactor, whereby the residual carbon in the solid material reacts with oxygen, and additional ash particles and exhaust gas are generated, and (f) ash particles from the ash reactor are guided along a conveying duct to the gas cooler or to a location upstream of the gas cooler, thereby increasing the ash content of the product gas and decreasing the tendency of the condensed tar compounds to stick to the heat exchange surfaces of the gas cooler.
Abstract:
A process for recovering metal material from waste material including organic material and metal material in the form of thin foil metal material. The process includes steps of introducing the waste material into a fluidized bed gasifier, introducing air through a bottom grid into the gasifier for fluidizing a bed of solid particles, for gasification of the organic material therein, and production of a combustible gas, discharging separately from the gasifier bottom ash and combustible gas produced in the gasification step, maintaining the temperature in the gasifier below the melting temperature of the metal material, tearing the thin foil metal material into small metal flakes in the fluidized bed, setting the velocity of the air in the fluidized bed such that the metal flakes are entrained with the produced combustible gas, but the not-gasified waste material and the bed particles stay in the bed, discharging the metal flakes from the gasifier together with the combustible gas and introducing the combustible gas discharged from the gasifier into a separator, for separating metal material from the combustible gas.
Abstract:
Flexible base web of a construction covering comprises a main layer extending at least over the greatest part of the thickness of the web and is constituted of a non-woven mineral fiber mat containing predominantly discontinuous mineral fibers. Said mat contains further blend fibers. The mat is manufactured using a dry method by means of an air stream whereby said blend fibers have become blended inside the mat during the dry method forming of the mat. The portion of said blend fibers is greater in the proximity of one of the surfaces of the mat than in the middle due to subsequent needling of the mat.
Abstract:
In a fluidized bed reactor system having a gas cooler, with cooling surfaces, downstream of a first cyclone separator, the cooling surfaces are cleaned by introducing sufficient concentration of bed particles into the gas during, or just prior to, cooling, so that the particles mechanically dislodge deposits from, and thereby clean, the cooling surfaces. The particles are then removed downstream of the cooler by a second separator, and the bed particles separated by the second separator may be returned to the fluidized bed reactor at or just before the cooler to again be used to effect cooling. Cleaning may be practiced in spaced time intervals only (e.g. periodically or intermittently), or continuously. Where practiced intermittently the efficiency of operation of the first separator may be diminished by introducing a fluid stream, or a solid object, into the vortex flow within the first separator, so that a sufficient number and size of particles pass through the first separator so as to effect cooler cleaning.
Abstract:
A method and apparatus for feeding solid material into a pressurized combustion or gasification plant in stages. The feed apparatus (10) is provided with an inlet (18), sluice chamber (30), and outlet (20). In a loading stage, solid material is conveyed through the inlet into the sluice chamber. The loaded sluice chamber is transferred to an unloading stage. During the transfer stage, the inlet (18) is closed. During the unloading stage, solid material is conveyed through the outlet (20) into a pressurized space (26). The volume of the sluice chamber (30) is adjustable so that the volume is enlarged during the loading stage and reduced during the unloading stage. The volume is adjusted e.g. by a piston (38).
Abstract:
In a method for manufacturing the fiber-containing article, the discontinuous fibers, intermingled with fibers serving as a binder, are couched into a fiber mat in such a manner that the discontinuous fibers are advanced into contact with an air flow which carries them up to a conveying level where the fibers become randomly directed and the fiber-carrying air flow is passed through this level.