摘要:
A structure of a porous low-k layer is described, comprising a bottom portion and a body portion of the same atomic composition, wherein the body portion is located on the bottom portion, and the bottom portion has a density higher than the density of the body portion. An interconnect structure is also described, including the above porous low-k layer, and a conductive layer filling up a damascene opening in the porous low-k layer.
摘要:
A method of forming a porous low-k layer is described. A CVD process is conducted to a substrate, wherein a framework precursor and a porogen precursor are supplied. In an end period of the supply of the framework precursor, the value of at least one deposition parameter negatively correlated with the density of the product of the CVD process is decreased.
摘要:
A method of forming a porous low-k layer is described. A CVD process is conducted to a substrate, wherein a framework precursor and a porogen precursor are supplied. In an end period of the supply of the framework precursor, the value of at least one deposition parameter negatively correlated with the density of the product of the CVD process is decreased.
摘要:
A structure of a porous low-k layer is described, comprising a bottom portion and a body portion of the same atomic composition, wherein the body portion is located on the bottom portion, and the bottom portion has a density higher than the density of the body portion. An interconnect structure is also described, including the above porous low-k layer, and a conductive layer filling up a damascene opening in the porous low-k layer.
摘要:
A dual damascene process starts with providing a substrate having thereon a base layer, a lower copper wiring inlaid into the base layer, and a lower cap layer covering the inlaid lower copper wiring. A dielectric layer is deposited on the lower cap layer. A TEOS-based oxide cap layer is deposited on the dielectric layer. The TEOS-based oxide cap layer has a carbon content lower than 1×1019 atoms/cm3. A metal hard mask is deposited on the TEOS-based oxide cap layer. A trench recess is etched into the metal hard mask and the TEOS-based oxide cap layer. A partial via feature is then etched into the TEOS-based oxide cap layer and the dielectric layer through the trench recess. The trench recess and partial via feature are etch transferred into the underlying dielectric layer, thereby forming a dual damascene opening, which exposes a portion of the lower copper wiring.
摘要:
A dual damascene process starts with providing a substrate having thereon a base layer, a lower copper wiring inlaid into the base layer, and a lower cap layer covering the inlaid lower copper wiring. A dielectric layer is deposited on the lower cap layer. A TEOS-based oxide cap layer is deposited on the dielectric layer. The TEOS-based oxide cap layer has a carbon content lower than 1×1019 atoms/cm3. A metal hard mask is deposited on the TEOS-based oxide cap layer. A trench recess is etched into the metal hard mask and the TEOS-based oxide cap layer. A partial via feature is then etched into the TEOS-based oxide cap layer and the dielectric layer through the trench recess. The trench recess and partial via feature are etch transferred into the underlying dielectric layer, thereby forming a dual damascene opening, which exposes a portion of the lower copper wiring.
摘要:
A method for fabricating a porous low-k dielectric film includes providing a substrate, performing a first CVD process by providing a back-bone precursor to form an interface dielectric layer, performing a second CVD process by providing a porogen precursor to form a back-bone layer, and removing the porogens in the back-bone layer so that the back-bone layer becomes an ultra low-k dielectric layer. The interface dielectric layer and the ultra low-k dielectric layer compose a porous low-k dielectric film.
摘要:
A method of curing a porous low-k layer is described, which is applied to a substrate with a porous low-k layer formed thereon, wherein the porous low-k: layer contains a porogen. A first UV-curing treatment is performed to the porous low-k layer under a relatively milder condition, and then a second UV-curing treatment is performed to the porous low-k layer under a relatively harsher condition to finish the curing of the porous low-k layer.
摘要:
A method for fabricating a porous low-k dielectric film includes providing a substrate, performing a first CVD process by providing a back-bone precursor to form an interface dielectric layer, performing a second CVD process by providing a porogen precursor to form a back-bone layer, and removing the porogen material in the back-bone layer so that the back-bone layer becomes an ultra low-k dielectric layer. The interface dielectric layer and the ultra low-k dielectric layer compose a porous low-k dielectric film.
摘要:
A method of restoring a low-k material is described, applied to a substrate with a low-k material thereon, wherein the substrate has been subject to a previous process that raised the k-value of the low-k material. The method includes performing a plasma treatment to the low-k material to decrease the k-value thereof.