摘要:
A method for fabricating a porous low-k dielectric film includes providing a substrate, performing a first CVD process by providing a back-bone precursor to form an interface dielectric layer, performing a second CVD process by providing a porogen precursor to form a back-bone layer, and removing the porogen material in the back-bone layer so that the back-bone layer becomes an ultra low-k dielectric layer. The interface dielectric layer and the ultra low-k dielectric layer compose a porous low-k dielectric film.
摘要:
A method for fabricating a porous low-k dielectric film includes providing a substrate, performing a first CVD process by providing a back-bone precursor to form an interface dielectric layer, performing a second CVD process by providing a porogen precursor to form a back-bone layer, and removing the porogens in the back-bone layer so that the back-bone layer becomes an ultra low-k dielectric layer. The interface dielectric layer and the ultra low-k dielectric layer compose a porous low-k dielectric film.
摘要:
A copper damascene process includes providing a substrate having a dielectric layer thereon, forming at least a copper damascene structure in the dielectric layer, performing a heat treatment on the substrate, and performing a reduction plasma treatment on a surface of the copper damascene structure. The impurities formed in the copper damascene process are removed by the heat treatment, therefore the copper damascene structure is completely reduced by the reduction plasma treatment and is improved.
摘要:
A dual damascene process starts with providing a substrate having thereon a base layer, a lower copper wiring inlaid into the base layer, and a lower cap layer covering the inlaid lower copper wiring. A dielectric layer is deposited on the lower cap layer. A TEOS-based oxide cap layer is deposited on the dielectric layer. The TEOS-based oxide cap layer has a carbon content lower than 1×1019 atoms/cm3. A metal hard mask is deposited on the TEOS-based oxide cap layer. A trench recess is etched into the metal hard mask and the TEOS-based oxide cap layer. A partial via feature is then etched into the TEOS-based oxide cap layer and the dielectric layer through the trench recess. The trench recess and partial via feature are etch transferred into the underlying dielectric layer, thereby forming a dual damascene opening, which exposes a portion of the lower copper wiring.
摘要:
A dual damascene process starts with providing a substrate having thereon a base layer, a lower copper wiring inlaid into the base layer, and a lower cap layer covering the inlaid lower copper wiring. A dielectric layer is deposited on the lower cap layer. A TEOS-based oxide cap layer is deposited on the dielectric layer. The TEOS-based oxide cap layer has a carbon content lower than 1×1019 atoms/cm3. A metal hard mask is deposited on the TEOS-based oxide cap layer. A trench recess is etched into the metal hard mask and the TEOS-based oxide cap layer. A partial via feature is then etched into the TEOS-based oxide cap layer and the dielectric layer through the trench recess. The trench recess and partial via feature are etch transferred into the underlying dielectric layer, thereby forming a dual damascene opening, which exposes a portion of the lower copper wiring.
摘要:
A method of restoring a low-k material is described, applied to a substrate with a low-k material thereon, wherein the substrate has been subject to a previous process that raised the k-value of the low-k material. The method includes performing a plasma treatment to the low-k material to decrease the k-value thereof.
摘要:
A method of improving adhesion property of a dielectric layer is provided. A dielectric layer is formed over a substrate. A plasma surface process comprising a plasma gas containing helium or hydrogen is performed to treat the surface of the dielectric layer. A cap layer is formed on the dielectric layer.
摘要:
A dielectric layer overlying a substrate is prepared. A damascene opening is etched into the dielectric layer. The damascene opening is filled with copper or copper alloy. A surface of the copper or copper alloy is treated with hydrogen-containing plasma such as H2 or NH3 plasma. The treated surface of the copper or copper alloy then reacts with trimethylsilane or tertramethylsilane under plasma enhanced chemical vapor deposition (PECVD) conditions. Subsequently, by PECVD, a silicon carbide layer is in-situ deposited on the copper or copper alloy.
摘要:
A manufacturing method of interconnect is provided. A dielectric layer is provided. A metal layer is formed in the dielectric layer. A fluorine-containing barrier layer is formed on the dielectric layer and covers the metal layer. The fluorine-containing barrier layer is formed by using chemical deposition method and introducing fluorine to the film in-situ.
摘要:
A method for fabricating a metal-oxide semiconductor (MOS) transistor is disclosed. The method includes the steps of: providing a semiconductor substrate; forming a gate structure on the semiconductor substrate and a source/drain region in the semiconductor substrate adjacent to two sides of the gate structure; covering a stress layer on the gate structure and the source/drain region; etching away the stress layer to form a plurality of openings with larger top and smaller bottom to expose surface of the gate structure and the source/drain region; forming a metal layer in the openings; and using the stress layer as a salicide block to react the metal layer with the gate structure and the source/drain region for forming a plurality of silicide layers.