Abstract:
A balloon-expandable stent formed from a customized alloy formulation. The stent alloy has a either a high, variable or no work hardening rate, very high modulus of elasticity (Young's modulus), and a low yield point. A stent constructed of a material with this combination of properties undergoes significant plastic deformation upon deployment in vivo to its implantation diameter and exhibits minimum recoil for better sizing. The plastic deformation also raises the subsequent yield point of the stent material resulting in a stronger stent upon implantation that is more resistant to vascular loading.
Abstract:
A valve replacement system that can be used for treating abnormalities of the right ventricular outflow tract includes a prosthetic valve device having a sealant contacting at least a portion of the outer surface of the valve device. The sealant may be breakable, and may be a hydrogel, an expandable hydrogel, or a solid. One embodiment of the invention includes a flowable sealant that is injected within the vascular system. Another embodiment of the invention includes a method for replacing a pulmonary valve that includes forming a seal around the exterior surface of a replacement valve and preventing blood flow around the replacement valve.
Abstract:
A balloon-expandable stent formed from a customized alloy formulation. The stent alloy has a either a high, variable or no work hardening rate, very high modulus of elasticity (Young's modulus), and a low yield point. A stent constructed of a material with this combination of properties undergoes significant plastic deformation upon deployment in vivo to its implantation diameter and exhibits minimum recoil for better sizing. The plastic deformation also raises the subsequent yield point of the stent material resulting in a stronger stent upon implantation that is more resistant to vascular loading.
Abstract:
A stent and a method for manufacturing a stent are provided. The stent includes a first ring having a plurality of peaks and a plurality of valleys, a second ring having a plurality of peaks and a plurality of valleys, and a connector that connects one of the peaks of the first ring to one of the valleys of the second ring. The connected peak of the first ring includes a deformed portion that extends towards the connected valley of the second ring. The method includes forming a first ring having a plurality of peaks and a plurality of valleys, forming a second ring having a plurality of peaks and a plurality of valleys, deforming a portion of at least one of the peaks of the first ring, and connecting the deformed portion of the peak of the first ring to one of the valleys of the second ring.
Abstract:
A spinal rod characterized by a time-varying stiffness. The rod comprises a first member and at least one second member that is mechanically coupled to the first member through a time-varying interface. The interface features a binding mechanism that degrades after surgical installation. For instance, the interface may be bioabsorbable and dissolve upon exposure to bodily fluids. In another instance, the second member may be comprised of a bioabsorbable material. In another embodiment, the interface may fail under cyclic loading. In another embodiment, degradation of the bioabsorbable material may be inhibited through the application of a current source. The second member may be disposed within the first member. Alternatively, the first member and the second member may be disposed aside one another. The first member and the second member may be substantially similar in shape. One or more bioabsorbable caps may be used to at least temporarily seal the second member from bodily fluids once the spinal rod is installed.
Abstract:
A capacitor cell is presented. The capacitor cell includes an anode, a cathode spaced from and operatively associated with the anode, an electrolyte operatively associated with the anode and the cathode. A layered separator includes a plurality of separator material layers disposed between the anode and cathode. The plurality of separator material layers includes a first layer and a second layer. The first layer is characterized by a first value of a physical property and the second layer is characterized by a second value of the physical property.
Abstract:
A stent graft extends in a flow lumen to span a defective portion of the flow lumen and seal the defective portion from further blood contact. The stent graft includes a pair of apertures, from which extensions project into the renal arteries to seal the passage of blood into the renal arteries from the abnormality. The apertures are larger than the opening of the renal arteries, such that the apertures need not be centered with the renal arteries to enable placement of the extensions. The aperture opening and side branch extensions contain hook and loop structures to provide a variably positionable seal of the aperture opening.
Abstract:
A stent graft extends in a flow lumen to span a defective portion of the flow lumen and seal the defective portion from further blood contact. The stent graft includes a pair of apertures, from which extensions project into the renal arteries to seal the passage of blood into the renal arteries from the abnormality. The apertures are larger than the opening of the renal arteries, such that the apertures need not be centered with the renal arteries to enable placement of the extensions. The aperture opening and side branch extensions contain hook and loop structures to provide a variably positionable seal of the aperture opening.
Abstract:
A biocompatible polymeric coating composition for a stent having biodegradable glass spheres housing a therapeutic agent. The biodegradable glass spheres provide controlled, sustained release of the therapeutic agent in vivo. The biocompatible polymeric coating may be prepared without the use of a co-solvent.
Abstract:
A current collector for a battery in an implantable medical device is presented. The current collector comprises a material that includes a first surface and a second surface. A first set of apertures extend from the first surface to the second surface of the material. A second set of apertures extend from the first surface to the second surface of the material. The second set of apertures are off-set from the first set of apertures.