摘要:
Microlithographic illumination system includes individually drivable elements to variably illuminate a pupil surface of the system. Each element deviates an incident light beam based on a control signal applied to the element. The system also includes an instrument to provide a measurement signal, and a model-based state estimator configured to compute, for each element, an estimated state vector based on the measurement signal. The estimated state vector represents: a deviation of a light beam caused by the element; and a time derivative of the deviation. The illumination system further includes a regulator configured to receive, for each element: a) the estimated state vector; and b) target values for: i) the deviation of the light beam caused by the deviating element; and ii) the time derivative of the deviation.
摘要:
An illumination system for illuminating a mask in a scanning microlithographic projection exposure apparatus has an objective with an object plane, at least one pupil surface and an image plane in which a mask can be arranged. A beam deflection array of reflective or transparent beam deflection elements is provided, where each beam deflection element is adapted to deflect an impinging light ray by a deflection angle that is variable in response to a control signal. The beam deflection elements are arranged in or in close proximity to the object plane of the objective.
摘要:
An illumination system of a microlithographic projection exposure apparatus has a pupil surface and an essentially flat arrangement of desirably individually drivable beam deviating elements for variable illumination of the pupil surface. Each beam deviating element allows deviation of a projection light beam incident on it to be achieved as a function of a control signal applied to the beam deviating element. A measurement illumination instrument directs a measurement light beam, independent of the projection light beams, onto a beam deviating element. A detector instrument records the measurement light beam after deviation by the beam deviating element. An evaluation unit determines the deviation of the projection light beam from measurement signals provided by the detector instrument.
摘要:
A microlithographic projection exposure apparatus (1) comprises an illumination system (4) with an illumination optics (5) for illuminating an illumination field in a reticle plane (6). The illumination optics (5) further includes a light distribution device (12a) which comprises a light deflection array (12) of separate elements and an optical assembly (21, 23 to 26) which converts the light intensity distribution defined by the light distribution device (12a) in a first plane (19) of the illumination optics (5) into an illumination angle distribution in the reticle plane (6). Downstream of an output coupling device (17), which is arranged in the light path between the light deflection array (12) and the reticle plane (6), a space and time resolving detection device (30) is exposed to outcoupled illumination light (31) in such a way that the detection device (30) detects a light intensity distribution corresponding to the light intensity distribution in the first plane (19). The detection device (30) allows the influence of separate elements or groups of separate elements on the light intensity distribution in the first plane (19) to be determined, particularly by varying said separate elements or groups of separate elements over time. The result is an illumination optics in which the function of the light deflection array is performed during normal operation.
摘要:
A method includes moving a correction device into a neutral position; subsequently ascertaining, for a given arrangement of imaging light channels in the illumination optical unit of the projection exposure apparatus, intensity distributions of at least some of the individual imaging light partial beams along a transverse coordinate transverse to a displacement direction of an object to be imaged; subsequently ascertaining, in dependence on the transverse coordinate, an actual variation of actual values of structure image sizes of object structures in an image field, onto which the object is imaged; and subsequently specifying a predetermined variation of the structure image sizes over the transverse coordinate and displacing correction elements of the correction device, starting from the neutral position, such that the actual variation matches the predetermined variation within a tolerance bandwidth. The method can provide improved imaging results as compared to known uniformity adjustment.
摘要:
A projection exposure apparatus for microlithography comprises illumination optics for illuminating object field points of an object field in an object plane is disclosed. The illumination optics have, for each object field point of the object field, an exit pupil associated with the object point, where sin(γ) is a greatest marginal angle value of the exit pupil. The illumination optics include a multi-mirror array that includes a plurality of mirrors to adjust an intensity distribution in exit pupils associated to the object field points. The illumination optics further contain at least one optical system to temporally stabilize the illumination of the multi-mirror array so that, for each object field point, the intensity distribution in the associated exit pupil deviates from a desired intensity distribution in the associated exit pupil in the case of a centroid angle value sin(β) by less than 2% expressed in terms of the greatest marginal angle value sin(γ) of the associated exit pupil and/or, in the case of ellipticity by less than 2%, and/or in the case of a pole balance by less than 2%.
摘要:
An illumination system of a micro-lithographic projection exposure apparatus is provided, which is configured to illuminate a mask positioned in a mask plane. The system includes a pupil shaping optical subsystem and illuminator optics that illuminate a beam deflecting component. For determining a property of the beam deflecting component, an intensity distribution in a system pupil surface of the illumination system is determined. Then the property of the beam deflecting component is determined such that the intensity distribution produced by the pupil shaping subsystem in the system pupil surface approximates the intensity distribution determined before. At least one of the following aberrations are taken into account in this determination: (i) an aberration produced by the illuminator optics; (ii) an aberration produced by the pupil shaping optical subsystem; (iii) an aberration produced by an optical element arranged between the system pupil surface and the mask plane.
摘要:
A projection exposure apparatus for microlithography comprises illumination optics for illuminating object field points of an object field in an object plane is disclosed. The illumination optics have, for each object field point of the object field, an exit pupil associated with the object point, where sin(γ) is a greatest marginal angle value of the exit pupil. The illumination optics include a multi-mirror array that includes a plurality of mirrors to adjust an intensity distribution in exit pupils associated to the object field points. The illumination optics further contain at least one optical system to temporally stabilize the illumination of the multi-mirror array so that, for each object field point, the intensity distribution in the associated exit pupil deviates from a desired intensity distribution in the associated exit pupil in the case of a centroid angle value sin(β) by less than 2% expressed in terms of the greatest marginal angle value sin(γ) of the associated exit pupil and/or, in the case of ellipticity by less than 2%, and/or in the case of a pole balance by less than 2%.
摘要:
An illumination system for illuminating a mask in a scanning microlithographic projection exposure apparatus has an objective with an object plane, at least one pupil surface and an image plane in which a mask can be arranged. A beam deflection array of reflective or transparent beam deflection elements is provided, where each beam deflection element is adapted to deflect an impinging light ray by a deflection angle that is variable in response to a control signal. The beam deflection elements are arranged in or in close proximity to the object plane of the objective.
摘要:
Illumination systems for microlithographic projection exposure apparatus, as well as related systems, components and methods are disclosed. In some embodiments, an illumination system includes one or more scattering structures and an optical integrator that produces a plurality of secondary light sources.