摘要:
An apparatus having at least one sensor for registering at least one chemical and/or physical, process variable, and at least one modularly constructed, measuring transducer circuit, which has at least one sensor unit, which ascertains a measured variable from the process variable registered by the sensor and supplies the sensor with energy as needed, and at least one application specific, signal processing unit for ascertaining a measured value of the measured variable, wherein a conditioned output signal is provided between the sensor unit and the application specific, signal processing unit, wherein the application specific, signal processing unit is exchangeably embodied, and wherein, as a function of a predeterminable accuracy of measurement with which the apparatus ascertains the measured values, a plurality of different types of application specific, signal processing units are provided.
摘要:
A pressure sensor includes a sensor body with a sensor chamber in the interior, at least a first separating membrane, forming a first separating membrane chamber connected with the sensor body. A measuring membrane divides the sensor chamber into two chamber portions. A pressure transfer liquid, with which the first separating membrane chamber, the first chamber portion and a channel therebetween are filled, in order to transfer a pressure to the measuring membrane; wherein the pressure sensor is specified for a temperature range between a minimum temperature and a maximum temperature, as well as for a pressure range. At the minimum temperature, the pressure transfer liquid volume in the first chamber portion, the first channel and the first separating membrane chamber is sufficient over the total pressure range to transfer the pressure to the measuring membrane, without the first separating membrane coming to rest, and that when, in the case of overload at maximum temperature, the entire pressure transfer liquid volume moves out of the first separating membrane chamber into the first chamber portion, and is accommodated by the measuring membrane, the measuring membrane experiences no plastic deformation.
摘要:
To the phase locked loop for controlling the oscillator that regenerates a bit-rate clock signal from a data signal by means of a phase comparison circuit followed by a low pass filter, the output of which controls the oscillator frequency, a digital frequency comparison circuit is provided for assuring that the oscillator frequency will be brought into the capture range of the phase locked loop. The output of the digital frequency comparison circuit is converted from digital to analog form for being used in combination with the low pass filter output to control the oscillator. Frequency and phase control signals are applied to opposite electrodes of a variable capacitance diode in the frequency determining circuit of the oscillator. In order to improve the operation the frequency comparison circuit, delayed and undelayed oscillator output clock signals are sampled by transitions of the data signal for respectively incrementing or decrementing a counter, the state of which is then converted into an anlog signal for contributing to the control of the oscillator. The data signal also is provided in delayed and undelayed forms, and these are combined in an exclusive-OR gate, the output of which is used both in the phase comparison circuit and in the sampling portion the frequency comparison circuit. That portion of the frequency comparison circuit controls a pair of monoflops through D-flipflops so as to provide the necessary incrementing or decrementing pulses for the counter.
摘要:
A pressure sensor includes a sensor body with a sensor chamber in the interior, at least a first separating membrane, forming a first separating membrane chamber connected with the sensor body. A measuring membrane divides the sensor chamber into two chamber portions. A pressure transfer liquid, with which the first separating membrane chamber, the first chamber portion and a channel therebetween are filled, in order to transfer a pressure to the measuring membrane; wherein the pressure sensor is specified for a temperature range between a minimum temperature and a maximum temperature, as well as for a pressure range. At the minimum temperature, the pressure transfer liquid volume in the first chamber portion, the first channel and the first separating membrane chamber is sufficient over the total pressure range to transfer the pressure to the measuring membrane, without the first separating membrane coming to rest, and that when, in the case of overload at maximum temperature, the entire pressure transfer liquid volume moves out of the first separating membrane chamber into the first chamber portion, and is accommodated by the measuring membrane, the measuring membrane experiences no plastic deformation.
摘要:
A pressure difference measuring cell for registering pressure difference between a first pressure and a second pressure, comprises: an elastic measuring arrangement having at least one measuring membrane, or diaphragm, that comprises silicon; a platform, which is pressure-tightly connected with the elastic measuring arrangement; a first hydraulic path for transferring a first pressure onto a first surface section of the elastic measuring arrangement; and a second hydraulic path for transferring a second pressure onto a second surface section of the elastic measuring arrangement. The first pressure opposes the second pressure, and the elastic deflection of the measuring arrangement is a measure for the difference between the first and the second pressure, wherein the pressure difference measuring cell has additionally at least one hydraulic throttle, characterized in that the at least one hydraulic throttle comprises porous silicon.
摘要:
The invention relates to a pressure measuring device (1) for measuring and/or monitoring pressure of a measured medium (14). The pressure measuring device (1) includes a sensor housing (9) and a measurement transmitter (3), wherein assigned to the sensor housing (9) is a pressure measuring cell (4) with a pressure sensitive measuring element (5), wherein assigned to the pressure measuring cell (4) is a temperature sensor (10; 11; 12; 13), and wherein assigned to the measurement transmitter (3) is a control/evaluation unit (16). In order to increase the accuracy of measurement of the pressure measuring device (1), it is provided, that the control/evaluation unit (16), in the case of an abrupt change of the temperature registered by the temperature sensor (10; 11; 12; 13), ascertains, or provides, a step response, wherein the step response has a sensor-type-specific, settling time (ts), and the control/evaluation unit (16), on the basis of the ascertained, or provided, step response, references the corresponding time-dependent integral temperature of the pressure measuring cell (4), in order to eliminate, or to compensate, the temperature influence on the pressure measurement signal provided by the measuring element (5).
摘要:
A differential amplifier (15, 16) which drives a recording head and is located on the headwheel which carries the recording head is equipped with automatic switchover provided by a transistor (18) in series with a resistance and the emitters of the differential amplifier. In the absence of signals in the rotor of the rotary transformer which supplies signals to be amplified for recording, this differential amplifier has substantially no idling current, but in response to the presence of a signal in the rotor, a switchover signal is provided making the transistor (18) in the emitter circuit of the differential amplifier conductive and putting the differential amplifier into class A operation. As a result, digital video signals can be recorded at a high data rate without distortion, whereas unintended erasure of the magnetic tape by direct current components in the winding of the recording head is prevented.
摘要:
A pressure sensor, comprising: a monocrystalline membrane body, which includes a measuring membrane and an edge region surrounding the measuring membrane. The edge region has a greater material thickness than the measuring membrane and the edge region has a first mounting surface, whose surface normal is given by a first principal crystal axis. A monocrystalline substrate, which, with respect to crystal structure, comprises the same semiconductor material as the membrane body, the substrate has a second mounting surface, whose surface normal extends parallel to the first principal crystal axis. The membrane body is tightly connected to the substrate by joining the first mounting surface to the second mounting surface. The orientations of other principal crystal axes of the membrane body and the substrate are, in each case, oriented parallel relative to one another.
摘要:
A flow measuring arrangement for measuring flow through a measuring tube comprises at least one constriction located in the measuring tube, which effects a reduction of a volume through which a medium flows; at least one deflectable membrane applied to said constriction, wherein deflection of the membrane effects a change of a volume through which medium flows in the measuring tube; a pressure measuring system connected to the measuring tube for measuring pressure (Δp, p); measuring electronics, which determines flow based on the measured pressure (Δp, p); an apparatus for producing a time variable deflection of the membrane and a diagnostic system, which determines an affect of said deflections of the membrane on the measured pressure (Δp, p), and which diagnoses the flow measuring arrangement based on the deflections and determined effects thereof on the measured pressure (Δp, p).
摘要:
A method for manufacturing a connection between two ceramic parts comprises: providing a first ceramic part and a second ceramic part; providing an active hard solder, or active braze, on at least one surface section of at least one of the ceramic parts; and heating the active hard solder, or active braze, in a vacuum soldering, brazing process. The entire active hard solder, or active braze, for connecting the first and second ceramic parts is provided in such a manner that at least one surface section of at least one of the ceramic parts, preferably both ceramic parts, is coated by means of gas phase deposition of the alloy of the active hard solder, or active braze.