摘要:
In a luminescence detecting apparatus and method for analyzing luminescent samples, luminescent samples are placed in a plurality of sample wells in a tray, and the tray is placed in a visible-light impervious chamber containing a charge coupled device camera. In the chamber, light from the luminescent samples pass through a collimator, a Fresnel field lens, an infrared filter, and a camera lens, whereupon a focused image is created by the optics on the camera. The use of an infrared filter suppresses stray IR radiation resulting from plate phosphorescence (which can result in abnormally high backgrounds and/or alteration of the image received by the camera).
摘要:
A luminescence detecting apparatus and method for analyzing luminescent samples is disclosed. Luminescent samples are placed in a plurality of sample wells in a tray, and the tray is placed in a visible-light impervious chamber containing a charge coupled device camera. The samples may be injected in the wells, and the samples may be injected with buffers and reagents, by an injector. In the chamber, light from the luminescent samples pass through a collimator, a Fresnel field lens, a filter, and a camera lens, whereupon a focused image is created by the optics on the charge-coupled device (CCD) camera. The use of a Fresnel field lens, in combination with a collimator and filter, reduces crosstalk between samples below the level attainable by the prior art. Preferred embodiments of the luminescence detecting apparatus and method disclosed include central processing control of all operations, multiple wavelength filter wheel, and robot handling of samples and reagents. Preferred embodiments of processing software integrated with the invention include elements for mechanical alignment, outlier shaving, masking, manipulation of multiple integration times to expand the dynamic range, crosstalk correction, dark subtraction interpolation and drift correction, multi-component analysis applications specifically tailored for luminescence, and uniformity correction.
摘要:
A luminescence detecting apparatus and method for analyzing luminescent samples is disclosed. Luminescent samples are placed in a plurality of sample wells in a tray, and the tray is placed in a visible-light impervious chamber containing a charge coupled device camera. The samples may be injected in the wells, and the samples may be injected with buffers and reagents, by an injector. In the chamber, light from the luminescent samples pass through a collimator, a Fresnel field lens, a filter, and a camera lens, whereupon a focused image is created by the optics on the charge-coupled device (CCD) camera. The use of a Fresnel field lens, in combination with a collimator and filter, reduces crosstalk between samples below the level attainable by the prior art. Preferred embodiments of the luminescence detecting apparatus and method disclosed include central processing control of all operations, multiple wavelength filter wheel, and robot handling of samples and reagents. Preferred embodiments of processing software integrated with the invention include elements for mechanical alignment, outlier shaving, edge detection and masking, manipulation of multiple integration times to expand the dynamic range, crosstalk correction, dark subtraction interpolation and drift correction, multi-component analysis applications specifically tailored for luminescence, and uniformity correction.
摘要:
Method and system providing calibration of light detected from biological samples with a correction factor including components for each of a plurality of spectrally distinguishable species and/or for each well and/or for each filter.
摘要:
An apparatus may comprise a frame supporting at least first and second skewed radiation sources and at least first and second radiation detectors. The first and second radiation detectors may be substantially non-contiguous such that a substantial gap exists between the first and second radiation detectors that is free of any radiation detectors. Each of the first and second radiation detectors may also configured and arranged to detect radiation emitted by each of the first and second skewed radiation sources.
摘要:
An optical instrument monitors PCR replication of DNA in a reaction apparatus having a temperature cycled block with vials of reaction ingredients including dye that fluoresces in presence of double-stranded DNA. A beam splitter passes an excitation beam to the vials to fluoresce the dye. An emission beam from the dye is passed by the beam splitter to a CCD detector from which a processor computes DNA concentration. A reference strip with a plurality of reference emitters emit reference beams of different intensity, from which the processor selects an optimum emitter for compensating for drift. Exposure time is automatically adjusted for keeping within optimum dynamic ranges of the CCD and processor. A module of the beam splitter and associated optical filters is associated with selected dye, and is replaceable for different dyes.
摘要:
A two-stage system for enhancing the imaging uniformity of a scintillation camera is disclosed. The camera includes means for detecting radiation events and for producing radiation count signals indicating the location and energy level of individual detected radiation events. The uniformity correction system compensates for imprecision in the camera's indication of both radiation event regional image count density and event energy level. Compensation for energy indication errors is done by a first stage, prior to a second stage correction for residual nonuniformity in regional image count density. The operations of both stages are carried out in real time for each individual radiation count, independently of the production of other counts.The first stage location and stores a representation of the respective peaks of the detected energy pulse height distribution for each of a plurality of regions in the camera's field of view. This regional profile of the camera's energy response characteristic is used to successively realign for each count the pulse height energy window defined by the camera imaging circuitry, to align the window over the respective energy peak for each count as a function of the count's location indication.The second uniformity correction stage, a flood correction circuit, produces and stores a profile of regional variation in the image count density indicated by the camera in response to a uniform radiation flood over its field. This stored information is used for calculating regional count density correction factors for different regions of the camera field. The correction factors are used for controlling the ratio of radiation counts corresponding to each region which are actually imaged, thus eliminating residual nonuniformity caused by nonuniform regional image count density produced by the camera.No scintillation camera is capable of producing radiation count signals which define either the location or the energy level of radiation events with absolute precision. Minute inaccuracies in the location, and energy level decoding cause nonuniformity in the image count density of the scintillation camera systems.The uniformity of image count density of a scintillation camera detector can be degraded by factors including inaccuracies in energy level decoding, inaccuracies in location (x-y) decoding, nonlinearity), regional variations in detector sensitivity, and other factors.
摘要:
An optical instrument monitors PCR replication of DNA in a reaction apparatus having a temperature cycled block with vials of reaction ingredients including dye that fluoresces in presence of double-stranded DNA. A beam splitter passes an excitation beam to the vials to fluoresce the dye. An emission beam from the dye is passed by the beam splitter to a CCD detector from which a processor computes DNA concentration. A reference strip with a plurality of reference emitters emit reference beams of different intensity, from which the processor selects an optimum emitter for compensating for drift. Exposure time is automatically adjusted for keeping within optimum dynamic ranges of the CCD and processor. A module of the beam splitter and associated optical filters is associated with selected dye, and is replaceable for different dyes.
摘要:
Apparatus for scanning large cargo to detect concealed contents include a mobile platform configured to carry and position at least one X-ray or gamma-ray source and at least one detector array at a plurality of positions with respect to a stationary cargo. The detector array may be mounted on a boom moveably affixed to the mobile platform. Multiple measurements of radiation passing through the cargo for various source-detector orientations can be used to compute volumetric images of concealed content within the cargo.