摘要:
A mechanism is provided for directed resource folding for power management. The mechanism receives a set of static platform characteristics and a set of dynamic platform characteristics for a set of resources associated with the data processing system thereby forming characteristic information. The mechanism determines whether one or more conditions have been met for each resource in the set of resources using the characteristic information. Responsive to the one or more conditions being met, the mechanism performs a resource optimization to determine at least one of a first subset of resources in the set of resources to keep active and a second subset of resources in the set of resources to dynamically fold. Based on the resource optimization, the mechanism performs either a virtual resource optimization to optimally schedule the first subset of resources or a physical resource optimization to dynamically fold the second subset of resources.
摘要:
A mechanism is provided for directed resource folding for power management. The mechanism receives a set of static platform characteristics and a set of dynamic platform characteristics for a set of resources associated with the data processing system thereby forming characteristic information. The mechanism determines whether one or more conditions have been met for each resource in the set of resources using the characteristic information. Responsive to the one or more conditions being met, the mechanism performs a resource optimization to determine at least one of a first subset of resources in the set of resources to keep active and a second subset of resources in the set of resources to dynamically fold. Based on the resource optimization, the mechanism performs either a virtual resource optimization to optimally schedule the first subset of resources or a physical resource optimization to dynamically fold the second subset of resources.
摘要:
A mechanism is provided for temporarily allocating dedicated processors to a shared processor pool. A virtual machine monitor determines whether a temporary allocation associated with an identified dedicated processor is long-term or short-term. Responsive to the temporary allocation being long-term, the virtual machine monitor determines whether an operating frequency of the identified dedicated processor is within a predetermined threshold of an operating frequency of one or more operating systems utilizing the shared processor pool. Responsive to the operating frequency of the identified dedicated processor failing to be within the predetermined threshold, the virtual machine monitor either increases or decreases the frequency of the identified dedicated processor to be within the predetermined threshold of the operating frequency of the one or more operating systems utilizing the shared processor pool and temporarily allocates the identified dedicated processor to the shared processor pool.
摘要:
A mechanism is provided for temporarily allocating dedicated processors to a shared processor pool. A virtual machine monitor determines whether a temporary allocation associated with an identified dedicated processor is long-term or short-term. Responsive to the temporary allocation being long-term, the virtual machine monitor determines whether an operating frequency of the identified dedicated processor is within a predetermined threshold of an operating frequency of one or more operating systems utilizing the shared processor pool. Responsive to the operating frequency of the identified dedicated processor failing to be within the predetermined threshold, the virtual machine monitor either increases or decreases the frequency of the identified dedicated processor to be within the predetermined threshold of the operating frequency of the one or more operating systems utilizing the shared processor pool and temporarily allocates the identified dedicated processor to the shared processor pool.
摘要:
Semiconductor device circuits and methods are provided for adjusting core processor performance and energy-efficiency based on usage metrics. Metric detection, performance state selection, and adjustment are done in digital logic hardware without intervening input from system software or firmware, thus greatly speeding the processor performance adjustment. Mapping usage and state information to desired processor power-performance states is also provided in circuitry rather than firmware or power control software. The mapping values may be programmable software or firmware, but detection, selection, and adjustment occur automatically in hardware without intervening input from firmware or software.
摘要:
A system is provided for unified management of power, performance, and thermals in computer systems. This system incorporates elements to effectively address all aspects of managing computing systems in an integrated manner, instead of independently. The system employs an infrastructure for real-time measurements feedback, an infrastructure for regulating system activity, component operating levels, and environmental control, a dedicated control structure for guaranteed response/preemptive action, and interaction and integration components. The system provides interfaces for user-level interaction. The system also employs methods to address power/thermal concerns at multiple timescales. In addition, the system improves efficiency by adopting an integrated approach, rather than treating different aspects of the power/thermal problem as individual issues to be addressed in a piecemeal fashion.
摘要:
Semiconductor device circuits and methods are provided for adjusting core processor performance based on usage metrics. Metric detection and adjustment are performed in digital logic hardware guided by registers providing maximum and minimum frequency settings, without intervening input from system software or firmware, thus greatly speeding the processor performance adjustment. Power-performance drivers provide applications or the operating system ability to specify maximum and minimum frequency requirements.
摘要:
Disclosed are systems, methods, and computer program products for managing power states in processors of a data processing system. In one embodiment, the invention is directed to a data processing system having dynamically configurable power-performance states (“pstates”). The data processing system includes a processor configured to operate at multiple states of frequency and voltage. The data processing system also has a power manager module configured to monitor operation of the data processing system. The data processing system further includes a pstates table having a plurality of pstate definitions, wherein each pstate definition includes a voltage value, a frequency value, and at least one unique pointer that indicates a transition from a given pstate to a different pstate. The voltage value, frequency value, and unique pointer of a given pstate definition are configurable, during operation of the data processing system, by the power manager module in response to changes in the operating parameters of the data processing system.
摘要:
A mechanism is provided for unified management of power, performance, and thermals in computer systems. This mechanism incorporates elements to effectively address all aspects of managing computing systems in an integrated manner, instead of independently. The mechanism employs an infrastructure for real-time measurements feedback, an infrastructure for regulating system activity, component operating levels, and environmental control, a dedicated control structure for guaranteed response/preemptive action, and interaction and integration components. The mechanism provides interfaces for user-level interaction. The mechanism also employs methods to address power/thermal concerns at multiple timescales. In addition, the mechanism improves efficiency by adopting an integrated approach, rather than treating different aspects of the power/thermal problem as individual issues to be addressed in a piecemeal fashion.
摘要:
Semiconductor device circuits and methods are provided for adjusting core processor performance and energy-efficiency based on usage metrics. Metric detection, performance state selection, and adjustment are done in digital logic hardware without intervening input from system software or firmware, thus greatly speeding the processor performance adjustment. Mapping usage and state information to desired processor power-performance states is also provided in circuitry rather than firmware or power control software. The mapping values may be programmable software or firmware, but detection, selection, and adjustment occur automatically in hardware without intervening input from firmware or software.