摘要:
A superlattice layer including a plurality of periods, each of which is formed from a plurality of sub-layers is provided. Each sub-layer comprises a different composition than the adjacent sub-layer(s) and comprises a polarization that is opposite a polarization of the adjacent sub-layer(s). In this manner, the polarizations of the respective adjacent sub-layers compensate for one another.
摘要:
A solution for designing and/or fabricating a structure including a quantum well and an adjacent barrier is provided. A target band discontinuity between the quantum well and the adjacent barrier is selected to coincide with an activation energy of a dopant for the quantum well and/or barrier. For example, a target valence band discontinuity can be selected such that a dopant energy level of a dopant in the adjacent barrier coincides with a valence energy band edge for the quantum well and/or a ground state energy for free carriers in a valence energy band for the quantum well. The quantum well and the adjacent barrier can be formed such that the actual band discontinuity corresponds to the target band discontinuity.
摘要:
A solution for designing and/or fabricating a structure including a quantum well and an adjacent barrier is provided. A target band discontinuity between the quantum well and the adjacent barrier is selected to coincide with an activation energy of a dopant for the quantum well and/or barrier. For example, a target valence band discontinuity can be selected such that a dopant energy level of a dopant in the adjacent barrier coincides with a valence energy band edge for the quantum well and/or a ground state energy for free carriers in a valence energy band for the quantum well. The quantum well and the adjacent barrier can be formed such that the actual band discontinuity corresponds to the target band discontinuity.
摘要:
A device including one or more layers with lateral regions configured to facilitate the transmission of radiation through the layer and lateral regions configured to facilitate current flow through the layer is provided. The layer can comprise a short period superlattice, which includes barriers alternating with wells. In this case, the barriers can include both transparent regions, which are configured to reduce an amount of radiation that is absorbed in the layer, and higher conductive regions, which are configured to keep the voltage drop across the layer within a desired range.
摘要:
A superlattice layer including a plurality of periods, each of which is formed from a plurality of sub-layers is provided. Each sub-layer comprises a different composition than the adjacent sub-layer(s) and comprises a polarization that is opposite a polarization of the adjacent sub-layer(s). In this manner, the polarizations of the respective adjacent sub-layers compensate for one another.
摘要:
A superlattice layer including a plurality of periods, each of which is formed from a plurality of sub-layers is provided. Each sub-layer comprises a different composition than the adjacent sub-layer(s) and comprises a polarization that is opposite a polarization of the adjacent sub-layer(s). In this manner, the polarizations of the respective adjacent sub-layers compensate for one another. Furthermore, the superlattice layer can be configured to be at least partially transparent to radiation, such as ultraviolet radiation.
摘要:
A device including one or more layers with lateral regions configured to facilitate the transmission of radiation through the layer and lateral regions configured to facilitate current flow through the layer is provided. The layer can comprise a short period superlattice, which includes barriers alternating with wells. In this case, the barriers can include both transparent regions, which are configured to reduce an amount of radiation that is absorbed in the layer, and higher conductive regions, which are configured to keep the voltage drop across the layer within a desired range.
摘要:
A solution for reducing a number of dislocations in an active region of an emitting device is provided. A dislocation bending structure can be included in the emitting device between the substrate and the active region. The dislocation bending structure can be configured to cause dislocations to bend and/or annihilate prior to reaching the active region, e.g., due to the presence of a sufficient amount of strain. The dislocation bending structure can include a plurality of layers with adjacent layers being composed of a material, but with molar fractions of an element in the respective material differing between the two layers. The dislocation bending structure can include at least forty pairs of adjacent layers having molar fractions of an element differing by at least five percent between the adjacent layers.
摘要:
A solution for reducing a number of dislocations in an active region of an emitting device is provided. A dislocation bending structure can be included in the emitting device between the substrate and the active region. The dislocation bending structure can be configured to cause dislocations to bend and/or annihilate prior to reaching the active region, e.g., due to the presence of a sufficient amount of strain. The dislocation bending structure can include a plurality of layers with adjacent layers being composed of a material, but with molar fractions of an element in the respective material differing between the two layers. The dislocation bending structure can include at least forty pairs of adjacent layers having molar fractions of an element differing by at least five percent between the adjacent layers.
摘要:
A solution for designing and/or fabricating a structure including a quantum well and an adjacent barrier is provided. A target band discontinuity between the quantum well and the adjacent barrier is selected to coincide with an activation energy of a dopant for the quantum well and/or barrier. For example, a target valence band discontinuity can be selected such that a dopant energy level of a dopant in the adjacent barrier coincides with a valence energy band edge for the quantum well and/or a ground state energy for free carriers in a valence energy band for the quantum well. Additionally, a target doping level for the quantum well and/or adjacent barrier can be selected to facilitate a real space transfer of holes across the barrier. The quantum well and the adjacent barrier can be formed such that the actual band discontinuity and/or actual doping level(s) correspond to the relevant target(s).