摘要:
Electrical contact outlet for an anode sheet of a lithium generator with polymer electrolyte, consisting of one or more multilayer electrochemical cells. The cell comprises at least one lithium base sheet having a thickness between about 1 and 50 microns to constitute the anode and its collector and additionally includes a cathode and its collector as well as the polymer electrolyte. A lateral end of the anode sheet extends beyond corresponding ends of the cathode and the collector to constitute a projecting zone. A metallic layer consisting of at least one rigid metal which is compatible with lithium is in electrical contact with the lateral end of the anode sheet but without electronic contact with the other components of the cell. The metallic layer constitutes the external terminal of the generator when the latter is in non-finished condition. According to a variant, a conductive and cohesive intermediate metallic zone, which consists of lithium or lithium rich ductile alloys is in intimate contact with the lateral end of the anode sheet and the metallic layer mentioned above is therefore in electrical contact with the lateral end of the anode sheet by means of the intermediate zone of lithium. Generators provided with such contact outlet as well as a process for the preparation of these contact outlets are described.
摘要:
The invention concerns an aprotic electrolytic composition located in the separator and in at least one composite electrode containing a powder of an active electrode material, and if necessary an electronic conduction additive of an electrochemical generator The electrolytic composition comprises a first polymer matrix consisting of a polyether and at least a second polymer matrix, macroscopically separated, and also at least an alkaline salt as well as a polar aprotic solvent: The polymer matrices are capable of being swollen by at least one of the polar aprotic solvents. The solvent or mixture of solvents is unevenly distributed between the polymer matrices. The invention also concerns an electrochemical generator comprising a negative electrode and positive electrode reversible to alkaline ions and a separator with polymer electrolyte, the electrolytic component of which is the composition described above. The invention further concerns the manufacture in two or three steps of a sub-assembly of an electrochemical generator by coating an electrode support with a composite electrode containing the second matrix, followed by a surface coating on the electrode resulting from the preceding step with a solution containing the first polymer matrix so as to form the separator wholly or partly.
摘要:
Rechargeable generator consisting of an anode of an alkali metal or a malleable alkali alloy, at least one polymer electrolyte which is conductive with respect to alkali cations and acts as separator, as well as at least one cathode which is reversible to cations of alkali metal and its current collector. The anode comprises a thin metallic sheet, which includes at the surface thereof a passivation film SEI capable of limiting reaction between the metal and the polymer electrolyte and to exchange lithium ions. The polymer electrolyte comprises a homogeneous separator which is capable of transmitting a pressure on the anode to resist against the dendridic strain of the metal of the anode by undergoing a rate of deformation lower than 35% of its thickness. The polymer electrolyte of the separator, contains a maximum amount of species which are reactive towards lithium and which can accumulate at the surface of the anode to permit a preservation of the quality of the ionic exchanges at the interface of the anode and electrolyte and finally, the combination of anode, electrolyte, cathode and collector is maintained under a mechanical strain which is sufficient to ensure that the separator confines the anode sheet in place to preserve the integrity of the lithium-electrolyte interface during consecutive cycles of dissolution/plating.
摘要:
In order to assemble the components of an electrochemical generator using lithium, which are in the form of thin films and comprise a lithium- or lithium alloy-based negative electrode and a solid polymer electrolyte with conduction using the lithium ion, an intermediate assembly is used which consists of a thin film of lithium supported by a film of inert plastic with controlled adhesion to the lithium, as a precursor of the negative electrode. This intermediate assembly can be produced, inter alia, by rolling a sheet of lithium between two films of inert plastic.
摘要:
Anode composition based on a mixture of plastic or elastomeric macromolecular material with ionic conduction, an alloy of lithium and particles of a carbon compound of the formula: Li.sub.x C where 0.ltoreq.x
摘要:
The invention concerns an aprotic electrolytic composition located in the separator and in at least one composite electrode containing a powder of an active electrode material, and if necessary an electronic conduction additive of an electrochemical generator. The electrolytic composition comprises a first polymer matrix consisting of a polyether and at least a second polymer matrix, macroscopically separated, and also at least an alkaline salt as well as a polar aprotic solvent: The polymer matrices are capable of being swollen by at least one of the polar aprotic solvents. The solvent or mixture of solvents is unevenly distributed between the polymer matrices. The invention also concerns an electrochemical generator comprising a negative electrode and positive electrode reversible to alkaline ions and a separator with polymer electrolyte, the electrolytic component of which is the composition described above. The invention further concerns the manufacture in two or three steps of a sub-assembly of an electrochemical generator by coating an electrode support with a composite electrode containing the second matrix, followed by a surface coating on the electrode resulting from the preceding step with a solution containing the first polymer matrix so as to form the separator wholly or partly.
摘要:
Process of manufacturing thin electrodes, supported on a sheet substrate, the electrodes being made from an element selected form lithium, lithium alloy, or doped lithium, whose melting point does not differ from the melting point of lithium by +50.degree. C. and whose thickness is constant, from a roller of the sheet and a source of the element. According to the invention, there is provided a bath of the element in molten state, the sheet is continuously unrolled, a constant quantity of the molten element is continuously applied on one of the two faces of the sheet, so as to produce a film on the sheet, whose thickness is constant and between abouth 0.1 and about 40.mu. and whose surface is homogeneous and uniform. The process is carried out in such a manner that the molten element is prevented from solidifying while in contact with the sheet, and the solidification of the element on the sheet takes place after formation of the film on the sheet. Electrode made of a sheet coated with a layer of lithium whose thickness is 0.1 to 40.mu..
摘要:
Process of manufacturing thin electrodes, supported on an electronically conductive sheet, the electrodes being made from an element selected from lithium, lithium alloy, or doped lithium, whose melting point does not differ from the melting point of lithium by .+-.50.degree. C. and whose thickness is constant, from a roller of the sheet and a source of the element. According to the invention, there is provided a bath of the element in molten state, the sheet is continuously unrolled, a constant quantity of the molten element is continuously applied on one of the two faces of the sheet, so as to produce a film on the sheet, whose thickness is constant and between about 0.1 and about 40.mu. and whose surface is homogeneous and uniform. The process is carried out in such a manner that the molten element is prevented from solidifying while in contact with the sheet, and the solidification of the element on the sheet takes place after formation of the film on the sheet. Electrode made of a sheet coated with a layer of lithium whose thickness is 0.1 to 40.mu..
摘要:
A method and a device for detecting a gaseous anhydride and measuring its concentration in an oxygen-bearing gas. The method comprises the following steps: (a) forming an electrolytic junction by contact between a first solid-electrolyte element containing oxyanions of the anhydride to be detected and a second, 0.sup.-- ion-conducting solid-electrolyte element such as stabilized zirconia; (b) bringing this electrolytic junction into contact with the gas containing the gaseous anhydride to be detected so as to form a triple junction; (c) creating at this triple junction a difference of potential measurable by means of two reference electrodes in contact with the first and second electrolyte elements respectively, by fixation of a constant potential in the vicinity of each of these reference electrodes, which themselves are spatially removed from the triple junction; (d) heating the triple junction to such a temperature that a logarithmic variation in the concentration of the anhydride to be detected produces a proportional, substantially linear variation in the difference of potential at the triple junction, this temperature being lower than the melting temperatures of the first and second electrolyte elements; and (e) measuring this difference of potential by means of a potentiometer connected to the reference electrodes so as to obtain a measurement of the concentration of the anhydride to be detected. This method and device may advantageously be used for detecting sulfur carbon anhydrides.
摘要:
In a rechargeable lithium battery including inter alia a lithium anode, a lithium ion reducible cathode bonded with a polymer, as well as a polymer electrolyte, potassium ions are introduced either in the cathode or in the electrolyte, or in both of them at the same time, so that potassium is distributed in the cathode and the electrolyte when the generator has reached equilibrium. This has the effect of stabilizing the performances of the battery during cycling in terms of energy and power.