摘要:
A method of forming a magnetic structure having layers with different magnetization orientations provided by a common magnetic bias layer includes the steps of depositing an antiferromagnetic layer between first and second ferromagnetic layers. During the deposition of the first and second ferromagnetic layers, magnetization fields of different orientations are employed separately to induce different directions of magnetization in the first and second layers. The different directions of magnetization in the first and second layers are sustained, through the process of exchange coupling, by the interposed antiferromagnetic layer which serves as the bias layer. A magnetic structure thus fabricated, can be used as a read transducer capable of generating differential signals with common mode noise rejection, and can be used as a magnetic pole for a magnetic head with reduced Barkhausen noise.
摘要:
A method of forming a magnetic structure having layers with different magnetization orientations provided by a common magnetic bias layer includes the steps of depositing an antiferromagnetic layer between first and second ferromagnetic layers. During the deposition of the first and second ferromagnetic layers, magnetization fields of different orientations are employed separately to induce different directions of magnetization in the first and second layers. The different directions of magnetization in the first and second layers are sustained, through the process of exchange coupling, by the interposed antiferromagnetic layer which serves as the bias layer. A magnetic structure thus fabricated, can be used as a read transducer capable of generating differential signals with common mode noise rejection, and can be used as a magnetic pole for a magnetic head with reduced Barkhausen noise.
摘要:
Exchange coupled magnetic thin films are produced by depositing an antiferromagnetic layer, followed by deposition of a layer of ferromagnetic material on the antiferromagnetic layer. The composite antiferromagnetic/ferromagnetic structure is then annealed at an elevated temperature for a predetermined length of time. This process results in considerably higher exchange coupling fields than obtainable before. Alternatively, the antiferromagnetic layer may be annealed prior to deposition of the ferromagnetic layer.
摘要:
A method of depositing insulating thin films on a substrate employs a target that is formed of material which includes a constituent element of the insulating thin film. An ion beam preferably of inert gas is then directed toward the target to disperse the target material. Simultaneously, a second ion beam which includes another constituent element of the insulating thin film is also directed toward the substrate. The material from the target and the element of the second ion beam react in proper stoichiometry and is deposited onto the substrate as the insulating thin film.
摘要:
Magnetic transducers are formed with common magnetic exchange layers capable of providing assertive and complementary signals. The transducers include an assertive transducer portion and a complementary transducer portion. Between the two transducer portions is a common bias portion which comprises an antiferromagnetic layer providing bias fields in different directions to the respective transducer portions. During normal operations, a current is directed into each of the transducer portions. The assertive transducer portion, being magnetically biased in one direction, generates a varying voltage as an assertive version of the electrical signal. The complementary transducer, being magnetically biased in another direction, generates another varying voltage as a complementary version of the electrical signal. In one embodiment, the transducer portions are implemented to operate as an anisotropic MR(AMR) sensor. In a second embodiment, the transducer portions operate as a giant MR(GMR) or spin valve sensor.
摘要:
A laminated pole structure for use in a low noise magnetic head suitable for high frequency signal operation is formed by interleaving a plurality of ferromagnetic layers and electrically insulating antiferromagnetic layers so as to form interface surfaces therebetween. External magnetic fields are applied as the interface surfaces are being formed for establishing exchange anisotropies with predetermined permanent exchange pinning directions in the ferromagnetic layers. The exchange anisotropies may be in the same or opposite directions, as defined by the external magnetic fields. In one embodiment, the pole structure has an open edge lamination, while in another embodiment the pole structure has a closed edge lamination. In still another embodiment, the antiferromagnetic layers include predetermined patterns of nonmagnetic material.
摘要:
Magnetic transducers are formed with common magnetic exchange layers capable of providing assertive and complementary signals. The transducers include an assertive transducer portion and a complementary transducer portion. Between the two transducer portions is a common bias portion which comprises an antiferromagnetic layer providing bias fields in different directions to the respective transducer portions. During normal operations, a current is directed into each of the transducer portions. The assertive transducer portion, being magnetically biased in one direction, generates a varying voltage as an assertive version of the electrical signal. The complementary transducer, being magnetically biased in another direction, generates another varying voltage as a complementary version of the electrical signal. In one embodiment, the transducer portions are implemented to operate as an anisotropic MR(AMR) sensor. In a second embodiment, the transducer portions operate as a giant MR(GMR) or spin valve sensor.
摘要:
A giant magnetoresistive dual spin valve sensor employs at least one magnetic biasing layer located adjacent to an antiferromagnetic layer in the spin valve structure which includes two pinned ferromagnetic layers. The antiferromagnetic layer simultaneously pins the biasing layer and the ferromagnetic layer nearest the antiferromagnetic layer. This structure eliminates the bias point offset present in prior dual spin valve sensors.