摘要:
A method for designing a device that comprises a first semiconductor chip, a second semiconductor chip and an adjustment target is disclosed. The first semiconductor chip comprises an input pad, a first power supply pad and a first ground pad. The second semiconductor chip comprises an output pad coupled to the input pad. The adjustment target is connected to the first and the second semiconductor chips. A main target variable is calculated from an input circuit chip model, an output circuit chip model of the second semiconductor chip in frequency domain and a target impedance model of the adjustment target in frequency domain. The input circuit chip model is created by representing the first semiconductor chip in frequency domain in consideration of a first capacitor model between the input pad and the first power supply pad, a second capacitor model between the input pad and the first ground pad, and a chip internal capacitor model between the first power supply pad and the first ground pad. The main target variable is compared with a predetermined constraint represented in frequency domain to decide design guidelines for the adjustment target.
摘要:
A method for designing a device that comprises a first semiconductor chip, a second semiconductor chip and an adjustment target is disclosed. The first semiconductor chip comprises an input pad, a first power supply pad and a first ground pad. The second semiconductor chip comprises an output pad coupled to the input pad. The adjustment target is connected to the first and the second semiconductor chips. A main target variable is calculated from an input circuit chip model, an output circuit chip model of the second semiconductor chip in frequency domain and a target impedance model of the adjustment target in frequency domain. The input circuit chip model is created by representing the first semiconductor chip in frequency domain in consideration of a first capacitor model between the input pad and the first power supply pad, a second capacitor model between the input pad and the first ground pad, and a chip internal capacitor model between the first power supply pad and the first ground pad. The main target variable is compared with a predetermined constraint represented in frequency domain to decide design guidelines for the adjustment target.
摘要:
A method for designing a semiconductor apparatus comprising a semiconductor package in consideration of power integrity for a semiconductor chip included in the semiconductor package is disclosed. A target variable for an adjustment target is calculated on the basis of target information about the adjustment target, wherein the target variable is represented in frequency domain, and the adjustment target includes a part of the semiconductor package. The target variable is compared with a predetermined constraint, which is represented in frequency domain, to identify a problematic section, wherein the problematic section corresponds to a frequency region at which the target variable exceeds the predetermined constraint. Design guidelines are decided to solve the identified problematic section.
摘要:
A method for designing a semiconductor apparatus comprising a semiconductor package in consideration of power integrity for a semiconductor chip included in the semiconductor package is disclosed. A target variable for an adjustment target is calculated on the basis of target information about the adjustment target, wherein the target variable is represented in frequency domain, and the adjustment target includes a part of the semiconductor package. The target variable is compared with a predetermined constraint, which is represented in frequency domain, to identify a problematic section, wherein the problematic section corresponds to a frequency region at which the target variable exceeds the predetermined constraint. Design guidelines are decided to solve the identified problematic section.
摘要:
A method for designing a semiconductor package is disclosed, wherein the semiconductor package comprises a semiconductor chip and an adjustment target. A first target variable is calculated in consideration of a first transition state where an output level of the semiconductor chip changes from a low level to a high level. A second target variable is calculated in consideration of a second transition state where an output level of the semiconductor chip changes from the high level to the low level. Inferior one of the first and the second target variables is selected as a main target variable. The main target variable and a predetermined constraint represented in frequency domain are compared to decide design guidelines for the adjustment target.
摘要:
A method for designing a semiconductor package is disclosed, wherein the semiconductor package comprises a semiconductor chip and an adjustment target. A first target variable is calculated in consideration of a first transition state where an output level of the semiconductor chip changes from a low level to a high level. A second target variable is calculated in consideration of a second transition state where an output level of the semiconductor chip changes from the high level to the low level. Inferior one of the first and the second target variables is selected as a main target variable. The main target variable and a predetermined constraint represented in frequency domain are compared to decide design guidelines for the adjustment target.
摘要:
Disclosed is a multichip package or system-in package which the logic chip includes a selector circuit which, by transmitting a test mode select signal or a test mode select command to the logic chip, enables access from a logic signal pin connected to the logic chip, to a memory control signal to each of the “m” number of memory chips; and the memory control signal, when viewed from the logic chip, is connected using a one-for-one wiring scheme or a one-for-up-to-m branch wiring scheme, between the selector circuit and each of the “m” number of memory chips. This multichip package or system-in package is low in noise and high in operational reliability.
摘要:
Disclosed is a multichip package or system-in package which the logic chip includes a selector circuit which, by transmitting a test mode select signal or a test mode select command to the logic chip, enables access from a logic signal pin connected to the logic chip, to a memory control signal to each of the “m” number of memory chips; and the memory control signal, when viewed from the logic chip, is connected using a one-for-one wiring scheme or a one-for-up-to-m branch wiring scheme, between the selector circuit and each of the “m” number of memory chips. This multichip package or system-in package is low in noise and high in operational reliability.
摘要:
A method and apparatus for measuring an electric field distribution according to the present invention calculates a distribution of electric field intensity and its direction at arbitrary positions on the surface of the electronic apparatus or its circumference with use of data of measurement positions and measurement results of a potential distribution on a surface of an electronic apparatus. Further, it clearly indicates a flow of electromagnetic energy on the surface or in the circumference of the electronic apparatus by applying mathematical treatments to a magnetic field distribution at circumferential positions of the electronic apparatus. Thus, a distribution of high-frequency electric field generated from the electronic apparatus is measured with high accuracy.
摘要:
A method and apparatus for measuring an electric field distribution according to the present invention calculates a distribution of electric field intensity and its direction at arbitrary positions on the surface of the electronic apparatus or its circumference with use of data of measurement positions and measurement results of a potential distribution on a surface of an electronic apparatus. Further, it clearly indicates a flow of electromagnetic energy on the surface or in the circumference of the electronic apparatus by applying mathematical treatments to a magnetic field distribution at circumferential positions of the electronic apparatus. Thus, a distribution of high-frequency electric field generated from the electronic apparatus is measured with high accuracy.