摘要:
A method for designing a semiconductor apparatus comprising a semiconductor package in consideration of power integrity for a semiconductor chip included in the semiconductor package is disclosed. A target variable for an adjustment target is calculated on the basis of target information about the adjustment target, wherein the target variable is represented in frequency domain, and the adjustment target includes a part of the semiconductor package. The target variable is compared with a predetermined constraint, which is represented in frequency domain, to identify a problematic section, wherein the problematic section corresponds to a frequency region at which the target variable exceeds the predetermined constraint. Design guidelines are decided to solve the identified problematic section.
摘要:
A method for designing a device that comprises a first semiconductor chip, a second semiconductor chip and an adjustment target is disclosed. The first semiconductor chip comprises an input pad, a first power supply pad and a first ground pad. The second semiconductor chip comprises an output pad coupled to the input pad. The adjustment target is connected to the first and the second semiconductor chips. A main target variable is calculated from an input circuit chip model, an output circuit chip model of the second semiconductor chip in frequency domain and a target impedance model of the adjustment target in frequency domain. The input circuit chip model is created by representing the first semiconductor chip in frequency domain in consideration of a first capacitor model between the input pad and the first power supply pad, a second capacitor model between the input pad and the first ground pad, and a chip internal capacitor model between the first power supply pad and the first ground pad. The main target variable is compared with a predetermined constraint represented in frequency domain to decide design guidelines for the adjustment target.
摘要:
A method for designing a semiconductor apparatus comprising a semiconductor package in consideration of power integrity for a semiconductor chip included in the semiconductor package is disclosed. A target variable for an adjustment target is calculated on the basis of target information about the adjustment target, wherein the target variable is represented in frequency domain, and the adjustment target includes a part of the semiconductor package. The target variable is compared with a predetermined constraint, which is represented in frequency domain, to identify a problematic section, wherein the problematic section corresponds to a frequency region at which the target variable exceeds the predetermined constraint. Design guidelines are decided to solve the identified problematic section.
摘要:
Disclosed is a multichip package or system-in package which the logic chip includes a selector circuit which, by transmitting a test mode select signal or a test mode select command to the logic chip, enables access from a logic signal pin connected to the logic chip, to a memory control signal to each of the “m” number of memory chips; and the memory control signal, when viewed from the logic chip, is connected using a one-for-one wiring scheme or a one-for-up-to-m branch wiring scheme, between the selector circuit and each of the “m” number of memory chips. This multichip package or system-in package is low in noise and high in operational reliability.
摘要:
Disclosed is a multichip package or system-in package which the logic chip includes a selector circuit which, by transmitting a test mode select signal or a test mode select command to the logic chip, enables access from a logic signal pin connected to the logic chip, to a memory control signal to each of the “m” number of memory chips; and the memory control signal, when viewed from the logic chip, is connected using a one-for-one wiring scheme or a one-for-up-to-m branch wiring scheme, between the selector circuit and each of the “m” number of memory chips. This multichip package or system-in package is low in noise and high in operational reliability.
摘要:
A method for designing a device that comprises a first semiconductor chip, a second semiconductor chip and an adjustment target is disclosed. The first semiconductor chip comprises an input pad, a first power supply pad and a first ground pad. The second semiconductor chip comprises an output pad coupled to the input pad. The adjustment target is connected to the first and the second semiconductor chips. A main target variable is calculated from an input circuit chip model, an output circuit chip model of the second semiconductor chip in frequency domain and a target impedance model of the adjustment target in frequency domain. The input circuit chip model is created by representing the first semiconductor chip in frequency domain in consideration of a first capacitor model between the input pad and the first power supply pad, a second capacitor model between the input pad and the first ground pad, and a chip internal capacitor model between the first power supply pad and the first ground pad. The main target variable is compared with a predetermined constraint represented in frequency domain to decide design guidelines for the adjustment target.
摘要:
Correction circuit models are acquired for correcting electrical characteristic parameters that change upon mounting on a board. The correction circuit models are added to a separate model that represents a separate semiconductor device in isolation to create a semiconductor device model that represents the semiconductor device in a board-mounted state. An equivalent circuit model that represents an adjustment-object system is connected to the semiconductor device model that was created, and based on the semiconductor device model to which the equivalent circuit model is connected, adjustment-object values relating to the adjustment-object system are calculated. These adjustment-object values are compared with limit values that were determined in advance, and based on the results of comparison, a design guide is determined for adjusting the adjustment-object system.
摘要:
An interposer to be mounted with an integrated circuit to be a test object is provided with a switch and a probe to detect an electric current corresponding to individual terminals of the integrated circuit. A test pattern signal is then inputted to the integrated circuit through a test substrate as a switch that is connected to a power supply terminal of the integrated circuit and that is turned off. If the integrated circuit normally operates and the current values of all the terminals of the integrated circuit are within a tolerance, the power supply terminal connected to the turned-off switch is identified as a terminal that may be removed.
摘要:
A semiconductor device or an information processing system comprises a plurality of circuit units, and a control unit for controlling a start timing of large-current operations executed by the respective circuit units within a predetermined period, where the large-current operation involves a relatively large current which flows in a power supply system, as compared with other operations. The control unit controls the start timing of the large-current operation from one circuit unit to another such that the waveform of a current flowing from the power supply system is shaped into the waveform of a half cycle of a sinusoidal wave when the circuit units execute large-current operations within the predetermined period.
摘要:
The present invention provides a technique which, without causing two problems, i.e., (1) increased number of power supply/grounding pins and (2) increased power feed line inductance, prevents the noise causing a problem in a control circuit, from becoming routed around and induced into an output buffer. More specifically, the above can be realized by using either of two methods: (A) providing an on-chip bypass capacitor for the control circuit and isolating a power feed route of the control circuit from that of the output buffer in an AC-like manner, or (B) designing electrical parameters (inserting resistors) such that the oscillation mode of any electrical parameter noise induced into the power feed routes will change to overdamping.