摘要:
Provided is an air-conditioning apparatus having a low-outside-air-temperature cooling operation mode including: a refrigerant circuit; an outdoor fan; an outdoor air temperature sensor; an indoor heat exchanger intermediate temperature sensor; an indoor heat exchanger outlet temperature sensor; and a controller configured to, when a measured value from the outdoor air temperature sensor is equal to or less than a predetermined value, perform the low-outside-air-temperature cooling operation mode, wherein in the low-outside-air-temperature cooling operation mode, the controller is configured to reduce a rotation speed of the outdoor fan, and to, when a difference between a measured value from the indoor heat exchanger outlet temperature sensor and a measured value from the indoor heat exchanger intermediate temperature sensor is equal to or greater than a first threshold, increase an opening degree of the pressure reducing device.
摘要:
An air-conditioning apparatus includes: a heat-medium transfer device including a pump provided to transfer a heat medium that contains water or brine and transfers heat; a plurality of indoor units each of which includes an indoor heat exchanger provided to cause heat exchange to be performed between indoor air and the heat medium, and a flow control valve provided to adjust a flow rate of the heat medium that flows through the indoor heat exchanger, the plurality of indoor units being connected to the heat-medium transfer device by respective heat medium pipes; and a controller provided to control an opening degree of the flow control valve. The controller determines a valve opening-degree control range that is a control range of an opening degree of the flow control valve of each indoor unit, based on a flow-passage resistance depending on a length of a pipe that extends from the heat-medium transfer device to the indoor unit, such that the lower the flow-passage resistance, the smaller the valve opening-degree control range.
摘要:
An outdoor unit, connected with indoor units by pipes to constitute a refrigerant circuit, includes a compressor configured to compress and discharge refrigerant, a plurality of parallel heat exchangers configured to allow heat exchange between air and the refrigerant, a first defrosting pipe serving as a flow path for branching a part of the refrigerant discharged by the compressor and allowing the refrigerant to flow into the parallel heat exchanger to be defrosted for defrosting, a first expansion device configured to decompress the refrigerant passing through the first defrosting pipe, a second expansion device configured to adjust the pressure of the refrigerant that passed through the parallel heat exchanger to be defrosted, and a controller configured to control the second expansion device such that the pressure of the refrigerant that passed through the parallel heat exchanger to be defrosted falls within a predetermined range.
摘要:
An air-conditioning apparatus has a controller that sets the target value of a difference between the temperatures of a secondary-side heat transfer medium at positions before and after a plurality of use side heat exchangers during a rated operation in a heating operation so as to have a larger magnitude than a target value of the difference between the temperatures of the secondary-side heat transfer medium at positions before and after the plurality of use side heat exchangers during a rated operation in the cooling operation.
摘要:
A refrigeration cycle apparatus including a heat source side heat exchanger including a first heat exchanger and a second heat exchanger connected in parallel; an air-sending device that supplies air, which is an object to be heat exchanged in the first heat exchanger and the second heat exchanger, in a variable manner; solenoid valves that each opens and closes a refrigerant passage of the first heat exchanger and the second heat exchanger; a third refrigerant circuit that is parallelly connected to the first heat exchanger and the second heat exchanger; and a flow control valve that controls the flow rate of the refrigerant flowing in the third refrigerant circuit. The refrigeration cycle apparatus can improve continuity of control of a heat exchange capacity of a heat source side heat exchanger.
摘要:
An air-conditioning system comprising: a heat source side unit; a use side unit; a relay unit; a refrigerant circuit; a water circuit; a controller configured to operate in a trial operation mode, and configured to operate in a normal operation mode; a first setting unit; a second setting unit; and a third setting unit, wherein the controller is configured to invalidate an error that occurs in the water circuit when the trial operation mode is set, a target for the trial operation in the trial operation mode is set to the refrigerant circuit, and invalidation of an error is set to be active, and invalidate an error that occurs in the refrigerant circuit when the trial operation mode is set, a target for the trial operation in the trial operation mode is set to the water circuit, and invalidation of an error is set to be active.
摘要:
An air conditioning apparatus uses a heat medium containing at least one of cold water and hot water. The air conditioning apparatus includes: a heat source device; a heat exchanger configured to exchange heat between the heat medium and air; a flow rate control valve configured to control a flow rate at which the heat medium is supplied to the heat exchanger; a temperature sensor configured to detect a temperature of the heat medium discharged from the heat exchanger; and a failure determination unit configured to detect presence or absence of an abnormality in a flow path of the heat medium based on the temperature detected by the temperature sensor and a commanded degree of opening for the flow rate control valve.
摘要:
An air-conditioning system includes a heat source side refrigerant circuit in which a heat source side heat exchanger is provided, a load side heat medium circuit in which a load side heat exchanger is provided, an intermediate heat exchanger, and a heat medium sealing. The heat medium sealing mechanism includes a supply port through which the heat medium and gas flow, the gas being more soluble in the heat medium than air, a discharge port through which the gas pushed by the heat medium is discharged, and a flow straightener that is connected to the load side heat medium circuit in such a manner that, when the gas is supplied, the gas flows from the supply port to the discharge port, and when the heat medium is supplied, the heat medium flows from the supply port to the discharge port.
摘要:
An exhaust heat recovery type of air-conditioning apparatus includes: an air-conditioning-side refrigerant circuit including a first flow switching device, a second flow switching device, and an exhaust-heat recovery heat exchanger connected in parallel to an outdoor heat exchanger and an indoor heat exchanger; and a refrigeration-side refrigerant circuit. The first flow switching device causes the outdoor heat exchanger to communicate with one of a discharge side and a suction side of a first compressor through a pipe. The second flow switching device causes the indoor heat exchanger to communicate with one of the discharge and suction sides of the first compressor through a pipe. The exhaust-heat recovery heat exchanger is connected to the suction side of the first compressor through a pipe, and causes heat exchange between refrigerants. Because of the above configuration, the exhaust heat recovery type of air-conditioning apparatus can use exhaust heat in any of operation modes.
摘要:
An air-conditioning apparatus includes a refrigerant circuit in which pipes sequentially connect a compressor, a flow switching device, a heat source side heat exchanger, an expansion device, a load side heat exchanger, and the flow switching device, and configured to perform a cooling operation and a heating operation switched by the flow switching device, an oil separator configured to separate refrigerating machine oil from refrigerant discharged from the compressor, a first bypass passage in which fluid flowing out of the oil separator flows, an auxiliary heat exchanger configured to cool the fluid, a first flow control device configured to control passing of the fluid, a second bypass passage in which liquid refrigerant or two-phase gas-liquid refrigerant flowing through one of the pipes connecting the heat source side heat exchanger and the expansion device flows, and a second flow control device configured to control passing of refrigerant.