摘要:
An integrated circuit, or portion thereof, such as a CMOS device, includes an epitaxially grown dielectric on a silicon carbide base. The epitaxially grown dielectric forms a gate dielectric and the silicon carbide base serves as a channel region for the CMOS device. In various embodiments, the epitaxially grown dielectric may be a crystalline carbon or carbon-containing film.
摘要:
An integrated circuit, or portion thereof, such as a CMOS device, includes an epitaxially grown dielectric on a silicon carbide base. The epitaxially grown dielectric forms a gate dielectric and the silicon carbide base serves as a channel region for the CMOS device. In various embodiments, the epitaxially grown dielectric may be a crystalline carbon or carbon-containing film.
摘要:
A method of removing a hard mask layer from a patterned layer formed over an underlying layer, where the hard mask layer is removed using an etchant that detrimentally etches the underlying layer when the underlying layer is exposed to the etchant for a length of time typically required to remove the hard mask layer, without detrimentally etching the underlying layer. The hard mask layer is modified so that the hard mask layer is etched by the etchant at a substantially faster rate than that at which the etchant etches the underlying layer. The hard mask layer is patterned. The patterned layer is etched to expose portions of the underlying layer. Both the hard mask layer and the exposed portions of the underlying layer are etched with the etchant, where the etchant etches the hard mask layer at a substantially faster rate than that at which the etchant etches the underlying layer, because of the modification of the hard mask layer.
摘要:
A method of fabricating a substantially completely silicided polysilicon gate electrode in a CMOS process flow. A hard mask material is formed on an integrated circuit substrate, where the integrated circuit substrate includes an unpatterned polysilicon layer that overlies a gate oxide layer, and a well region disposed between isolation structures. Portions of the hard mask material are removed to define gate electrode masks that overlie first portions of the unpatterned polysilicon layer and the gate oxide layer, leaving exposed second portions of the unpatterned polysilicon layer and the gate oxide layer. The integrated circuit substrate is exposed to a dopant that passes through the second portions of the gate oxide layer but does not penetrate the first portions of the gate oxide layer that underlie the gate electrode masks, which defines source drain regions in the well region. The exposed second portions of the unpatterned polysilicon layer are removed to define polysilicon gate electrode precursors under the gate electrode masks. The gate electrode masks are removed from the polysilicon gate electrode precursors, and a metal layer is deposited over the polysilicon gate electrode precursors and the source drain regions. The integrated circuit substrate is annealed to substantially completely consume the polysilicon gate electrode precursors and form silicide gate electrodes from the polysilicon gate electrode precursors and the overlying metal layer, by which silicide contacts in the source drain regions are also formed.
摘要:
A method of fabricating a semiconductor wafer includes fabricating a gate electrode on a silicon substrate of the semiconductor device and incorporating germanium into the silicon substrate thereafter.
摘要:
A method for implanting ions in a semiconductor is disclosed. The method includes implanting indium ions into a substrate of a semiconductor material of the semiconductor device for a first time period. The method also includes implanting boron ions into the substrate for a second time period, wherein the first time period is initiated prior to the second time period.
摘要:
An integrated circuit (IC) includes a CMOS device formed above a semiconductor substrate having ions therein that are implanted in the semiconductor substrate by an ion recoil procedure. The IC preferably, but not necessarily, incorporates sub-0.1 micron technology in the CMOS device. The implanted ions may preferably be germanium ions. A strained-silicon layer is preferably, but not necessarily, formed above the ion-implanted layer of the semiconductor substrate. The strained-silicon layer may be formed by a silicon epitaxial growth on the ion-implanted layer or by causing the ions to recoil into the semiconductor substrate with such energy that a region of the semiconductor substrate in the vicinity of the surface thereof is left substantially free of the ions, thereby forming a strained-silicon layer in the substantially ion-free region.
摘要:
Silicon nitride gate insulators for digital transistors and silicon dioxide gate insulators for analog transistors of a hybrid integrated circuit (IC) are formed in a single integrated fabrication process. A first area of a silicon substrate of the IC is exposed while a second area is initially covered by a silicon dioxide layer. A layer of silicon nitride is formed on the exposed first area while the initial silicon dioxide layer inhibits the formation of silicon nitride on the second area. Thereafter the initial silicon dioxide layer is removed from the second area to allow a new silicon dioxide layer to be formed there from the exposed silicon substrate. The silicon dioxide layer shields against the adverse influences from silicon nitride formation and permits the initial silicon dioxide layer to be removed by etching. The silicon nitride layer shields against the adverse influences of oxidizing new silicon dioxide layer. A slight, beneficial silicon dioxide interface is created between the silicon nitride and the silicon substrate as a result of oxidizing the new layer of silicon dioxide.
摘要:
Silicon nitride gate insulators for digital transistors and silicon dioxide gate insulators for analog transistors of a hybrid integrated circuit (IC) are formed in a single integrated fabrication process. A first area of a silicon substrate of the IC is exposed while a second area is initially covered by a silicon dioxide layer. A layer of silicon nitride is formed on the exposed first area while the initial silicon dioxide layer inhibits the formation of silicon nitride on the second area. Thereafter the initial silicon dioxide layer is removed from the second area to allow a new silicon dioxide layer to be formed there from the exposed silicon substrate. The silicon dioxide layer shields against the adverse influences from silicon nitride formation and permits the initial silicon dioxide layer to be removed by etching. The silicon nitride layer shields against the adverse influences of oxidizing new silicon dioxide layer. A slight, beneficial silicon dioxide interface is created between the silicon nitride and the silicon substrate as a result of oxidizing the new layer of silicon dioxide.