摘要:
An integrated circuit, or portion thereof, such as a CMOS device, includes an epitaxially grown dielectric on a silicon carbide base. The epitaxially grown dielectric forms a gate dielectric and the silicon carbide base serves as a channel region for the CMOS device. In various embodiments, the epitaxially grown dielectric may be a crystalline carbon or carbon-containing film.
摘要:
An integrated circuit, or portion thereof, such as a CMOS device, includes an epitaxially grown dielectric on a silicon carbide base. The epitaxially grown dielectric forms a gate dielectric and the silicon carbide base serves as a channel region for the CMOS device. In various embodiments, the epitaxially grown dielectric may be a crystalline carbon or carbon-containing film.
摘要:
An integrated circuit, or portion thereof, such as a CMOS device, includes an epitaxially grown dielectric on a silicon carbide base. The epitaxially grown dielectric forms a gate dielectric and the silicon carbide base serves as a channel region for the CMOS device. In various embodiments, the epitaxially grown dielectric may be a crystalline carbon or carbon-containing film.
摘要:
A method for planarizing a surface of an electrically conductive layer on a substrate, where the surface of the electrically conductive layer has relatively high features and relatively low features. A viscous material is applied to the surface of the electrically conductive layer, whereby at least the relatively low features are covered by the viscous material. The substrate is immersed in an electrically conductive solution. An electrical potential is applied between the electrically conductive layer and an electrode within the electrically conductive solution, whereby reaction kinetics favor erosion of the electrically conductive layer. The electrically conductive solution is agitated, thereby selectively uncovering the viscous material from at least features that are relatively high, and thereby preferentially planarizing at least the features that are relatively high.
摘要:
A low temperature process is described for forming a low dielectric constant (k) fluorine and carbon-containing silicon oxide dielectric material for integrated circuit structures. A reactor has a semiconductor substrate mounted on a substrate support which is maintained at a low temperature not exceeding about 25° C., preferably not exceeding about 10° C., and most preferably not exceeding about 0° C. A low k fluorine and carbon-containing silicon oxide dielectric material is formed on the surface of the substrate by reacting together a vaporous source of a mild oxidizing agent, such as a vaporized hydrogen peroxide, and a vaporous substituted silane having the formula (CFmHn)—Si—(R)xHy wherein m is 1-3; n is 3-m; R is an alkyl selected from the group consisting of ethyl (—C2H5), methyl (—CH3), and mixtures thereof; x is 1-3; and y is 3-x.
摘要:
A method for determining an effect of via/contact pattern density in via/contact etch rate of a wafer includes determining a neutral etchant species number flux intersecting each via/contact mouth as a function of local layout characteristics and determining variations in the neutral etchant species flux number as a function of the via/contact pattern density in a wafer scale. The comparison of these number fluxes provides the capability to discriminate an underetched or an overetched via/contact from normal vias/contacts satisfying an etch tolerance criterion. Chip designers can modify the layout design to minimize via/contact failures. Chip manufacturers can modify the etching process to minimize via/contact failures.
摘要:
A dual damascene-based interconnect structure which includes a liner of aluminum-0.5% copper alloy. The alloy can be implemented by depositing the alloy using a conventional PVD technique. To completely secure against copper atoms possibly penetrating through the aluminum-0.5% copper alloy, one or more Ta/TaN liners can be employed in addition to the aluminum-0.5% copper alloy liner. If Ta/taN is to be used, preferably the Ta/TaN is deposited before the aluminum-0.5% copper alloy is deposited.
摘要:
A method of forming a metal interconnect in an integrated circuit. A copper layer is formed over dielectric structures on the integrated circuit, where the dielectric structures have an upper level. The copper layer is planarized to be no higher than the upper level of the dielectric structures, without reducing the upper level of the dielectric structures. An electrically conductive capping layer is formed over all of the copper layer, without the capping layer forming over any of the dielectric structures.
摘要:
A method for treating exposed surfaces of a low k carbon doped silicon oxide dielectric material in order to protect the low k carbon doped silicon oxide dielectric material from damage during removal of photoresist mask materials is described. The process comprises (a) first treating the exposed surfaces of a low k carbon doped silicon oxide dielectric material with a plasma capable of forming a densified layer on and adjacent the exposed surfaces of low k carbon doped silicon oxide dielectric material and (b) then treating the semiconductor wafer with a mild oxidizing agent capable of removing photoresist materials from the semiconductor wafer. These steps will prevent the degradation of the exposed surfaces of a low k carbon doped silicon oxide dielectric material during removal of an etch mask after formation of vias or contact openings in the low k carbon doped silicon oxide dielectric material.
摘要:
Provided is a method of fabricating gate dielectric layers having variable thicknesses and compositions over different regions of a semiconductor wafer. In a preferred embodiment of the present invention, a gate oxide layer is first grown over the various regions. Regions that are to have a relatively thicker, unhardened gate dielectric are masked and the wafer is exposed to a remote low energy nitrogen plasma. After the nitridization process is completed, the mask is removed and the wafer is exposed to further oxidation. The regions where oxynitrides have been formed act as a barrier to the oxidation process. Consequently, different oxide thicknesses can be grown on the same wafer, thinner and hardened where nitridization has been performed, and thicker and not hardened in those regions that were masked during the nitridization. Variable thickness gate dielectrics in accordance with the present invention may be particularly advantageous in semiconductor integrated circuits involving both digital and analog devices.