摘要:
A ceramic material according to the present invention mainly contains magnesium, aluminum, oxygen, and nitrogen, the ceramic material has the crystal phase of a MgO—AlN solid solution in which aluminum nitride is dissolved in magnesium oxide, the crystal phase serving as a main phase. Preferably, XRD peaks corresponding to the (200) and (220) planes of the MgO—AlN solid solution measured with CuKα radiation appear at 2θ=42.9 to 44.8° and 62.3 to 65.2°, respectively, the XRD peaks being located between peaks of cubic magnesium oxide and peaks of cubic aluminum nitride. More preferably, the XRD peak corresponding to the (111) plane appears at 2θ=36.9 to 39°, the XRD peak being located between a peak of cubic magnesium oxide and a peak of cubic aluminum nitride.
摘要:
A ceramic material mainly contains magnesium, aluminum, oxygen, and nitrogen, in which the ceramic material has a magnesium-aluminum oxynitride phase serving as a main phase, wherein XRD peaks of the magnesium-aluminum oxynitride phase measured with CuKα radiation appear at at least 2θ=47 to 50°.
摘要:
A ceramic material according to the present invention mainly contains magnesium, aluminum, oxygen, and nitrogen, the ceramic material has the crystal phase of a MgO—AlN solid solution in which aluminum nitride is dissolved in magnesium oxide, the crystal phase serving as a main phase. Preferably, XRD peaks corresponding to the (200) and (220) planes of the MgO—AlN solid solution measured with CuKα radiation appear at 2θ=42.9 to 44.8° and 62.3 to 65.2°, respectively, the XRD peaks being located between peaks of cubic magnesium oxide and peaks of cubic aluminum nitride. More preferably, the XRD peak corresponding to the (111) plane appears at 2θ=36.9 to 39°, the XRD peak being located between a peak of cubic magnesium oxide and a peak of cubic aluminum nitride.
摘要:
A ceramic material mainly contains magnesium, aluminum, oxygen, and nitrogen, in which the ceramic material has a magnesium-aluminum oxynitride phase serving as a main phase, wherein XRD peaks of the magnesium-aluminum oxynitride phase measured with CuKα radiation appear at at least 2θ=47 to 50°.
摘要:
An electrostatic chuck is provided with a ceramic substrate 12 in which an electrode 14 is embedded, an electrode terminal 14a exposed at the bottom of a concave portion 16 disposed on the back surface of the ceramic substrate 12, a power feed member 20 to supply an electric power to the electrode 14, and a joining layer 22 to connect this power feed member 20 to the ceramic substrate 12. The joining layer 22 is formed by using a AuGe based alloy, a AuSn based alloy, or a AuSi based alloy. The ceramic substrate 12 and the power feed member 20 are selected in such a way that the thermal expansion coefficient difference D calculated by subtracting the thermal expansion coefficient of the ceramic substrate 12 from the thermal expansion coefficient of the power feed member 20 satisfies −2.2≦D≦6 (unit: ppm/K).
摘要:
A manufacturing method of a sintered ceramic body mixes barium silicate with aluminum oxide, a glass material, and an additive oxide to prepare a material mixture, molds the material mixture and fires the molded object. The barium silicate is monoclinic and has an average particle diameter in a range of 0.3 μm to 1 μm and a specific surface area in a range of 5 m2/g to 20 m2/g. The aluminum oxide has an average particle diameter in a range of 0.4 μm to 10 μm, a specific surface area in a range of 0.8 m2/g to 8 m2/g. A volume ratio of the aluminum oxide to the barium silicate is in a range of 10% by volume to 25% by volume.
摘要:
The aluminum-nitride-based composite material according to the present invention is an aluminum-nitride-based composite material that is highly pure with the content ratios of transition metals, alkali metals, and boron, respectively as low as 1000 ppm or lower, has AlN and MgO constitutional phases, and additionally contains at least one selected from the group consisting of a rare earth metal oxide, a rare earth metal-aluminum complex oxide, an alkali earth metal-aluminum complex oxide, a rare earth metal oxyfluoride, calcium oxide, and calcium fluoride, wherein the heat conductivity is in the range of 40 to 150 W/mK, the thermal expansion coefficient is in the range of 7.3 to 8.4 ppm/° C., and the volume resistivity is 1×1014 Ω·cm or higher.
摘要:
A method for manufacturing cordierite ceramics is provided, including forming and heating a cordierite-forming raw material containing α-alumina. The degree of orientation, expressed by (I006/(I300+I006), where Ihkl is height of X-ray diffraction intensity of an hkl-face of an α-alumina crystal, by X-ray diffraction measurement of an α-alumina crystal in a formed article of the raw material for forming cordierite is 0.10 or more.
摘要:
An aluminum nitride ceramic is provided, containing boron atoms in an amount of not lower than 1.0 weight percent and carbon atoms in an amount of not lower than 0.3 weight percent and having a volume resistivity at room temperature of not higher than 1×1012 Ω·cm. The aluminum ceramic comprises aluminum nitride and an intergranular phase mainly consisting of boron nitride constituting a conductive path. Such a ceramic may be obtained by holding a mixture containing at least aluminum nitride and boron carbide at a holding temperature in a range of 1400° C. to 1800° C. and then sintering the mixture at a maximum temperature that is higher than the holding temperature.
摘要:
In AlN crystal grains constituting a sintered body, is contained: 150 ppm-0.5 wt. %, preferably at most 0.1 wt.%, of at least one rare earth element (as oxide thereof); at most 900 ppm, preferably at most 500 ppm of at least one metal impurity except rare earth elements; and preferably at least 0.5 wt. % of oxygen measured by an electron probe X-ray microanalyzer. The grains have an average grain diameter of preferably at least 3.0 .mu.m and show a main peak in the wavelength range of 350-370 nm of spectrum obtained by a cathode luminescence method. The sintered body composed of AlN crystal grains has a volume resistivity at room temperature of at most 1.0.times.10.sup.12 .OMEGA..multidot.cm.