摘要:
This disclosure herein pertains to a method for producing a GaP epitaxial wafer used for fabrication of light emitting diodes having higher brightness than light emitting diodes fabricated from a GaP epitaxial wafer produced by a conventional method have. The method comprises the steps of: preparing a GaP layered substrate 15 with one or more GaP layers on a GaP single crystal substrate 10 in the first series of liquid phase epitaxial growth; obtaining a layered GaP substrate 15a by eliminating surface irregularities of said GaP layered substrate 15 by mechano-chemical polishing to make the surface to be planar; and then forming a GaP light emitting layer composite 19 on said layered GaP substrate 15a in the second series of liquid phase epitaxial growth.
摘要:
To provide a GaP red light emitting element substrate which a large amount of oxygen is doped in the p-type GaP layer, and which very few Ga.sub.2 O.sub.3 precipitates develop on and/or in p-type GaP layer, and methods of manufacturing said substrate. After the n-type GaP layer 2 is grown on the n-type GaP single crystal substrate 1, when forming the p-type GaP layer 3 doped with Zn and O, on said n-type GaP layer 2 by means of the liquid phase epitaxial growth method, the p-type GaP layer 3 is grown by using a Ga solution with a high concentration of oxygen, and said Ga solution is removed from the substrate 1 to complete the growth when the temperature is lowered to a prescribed temperature of 980.degree. C. or higher. When the temperature has reached the prescribed temperature of 980.degree. C. or higher during the growth using the Ga solution with a high concentration of oxygen, it is also possible to treat said Ga solution to decrease the concentration of the contained oxygen and then continue the growth. It is also possible to conduct the growth using the Ga solution with a high concentration of oxygen until the temperature reaches the prescribed temperature of 980.degree. C. or higher, and then, after switching the growth solution to a Ga solution with a low concentration of oxygen, continue the growth.
摘要:
To obtain a GaP light emitting element substrate which provides GaP light emitting diodes with less luminance dispersion and high brightness. A GaP light emitting element substrate comprising an n-type GaP buffer layer, an n-type GaP layer and a p-type GaP layer layered one after another on an n-type GaP single crystal substrate, wherein the oxygen concentration in said n-type GaP buffer layer is kept at 6.times.10.sup.15 [atoms/cc] or less.
摘要:
A semiconductor substrate for GaP type light emitting devices which includes an n-type single crystal substrate, an n-type GaP layer, and a p-type GaP layer formed on the n-type GaP single crystal substrate. The carbon concentration in the n-type GaP single crystal substrate is more than 1.0.times.10.sup.16 atoms/cc but less than 1.0.times.10.sup.17 atoms/cc. The n-type GaP single crystal substrate is obtained from an n-type GaP single crystal grown by the Liquid Encapsulation Czochralski method wherein B.sub.2 O.sub.3 containing water corresponding to 200 ppm or more is used as an encapsulation liquid.
摘要翻译:一种用于GaP型发光器件的半导体衬底,其包括在n型GaP单晶衬底上形成的n型单晶衬底,n型GaP层和p型GaP层。 n型GaP单晶衬底中的碳浓度大于1.0×1016原子/ cc但小于1.0×10 17原子/ cc。 n型GaP单晶基板是通过使用液态封装法,其使用含有对应于200ppm以上的水的B 2 O 3作为封装液体的液体封装法,由n型GaP单晶获得。
摘要:
A GaP light emitting element substrate comprising an n-type GaP layer, a nitrogen-doped n-type GaP layer and a p-type GaP layer layered one after another on a multi-layer GaP substrate built by forming an n-type GaP buffer layer(s) on an n-type GaP single crystal substrate, wherein the sulfur (S) concentration in said n-type GaP buffer layer is made to be 5.times.10.sup.16 [atoms/cc] or less. The method of manufacturing it is as follows: an n-type GaP buffer layer(s) is formed on an n-type GaP single crystal substrate to prepare a multi-layer GaP substrate, then an n-type GaP layer, a nitrogen doped n-type GaP layer and a p-type GaP layer are layered on said multi-layer GaP substrate by means of the melt-back method to obtain a GaP light emitting element substrate, wherein the sulfur (S) concentration in said n-type GaP buffer layer is made to be 5.times.10.sup.16 [atoms/cc] or less when the multi-layer GaP substrate is prepared.
摘要:
An optical waveguide plate for a surface light emitting apparatus and a surface light emitting apparatus using the optical waveguide plate that provides excellent uniformity in surface emission is disclosed. The optical waveguide plate comprises an end face introducing light emitted from a light source, and a light emitting surface outputting light introduced from the end face. The end face has a light introducing portion comprising a plurality of notched prisms which disperse incident light. The intervals between two adjacent prisms are set to become greater in proportion to the distance from the center of the light introducing portion. The angles of the prisms are also adjusted to provide uniform surface emission.
摘要:
Clutch mechanism includes support plate, input element to which driving force is input, output element configured to rotate upon receiving driving force, first elastic member configured to bias output element toward support plate, first member including sliding arm inserted through through-hole of support plate and first slide surface, and second member configured to accommodate first member and including second slide surface. Insertion of the sliding arm into through-hole prevents rotation of first member with respect to support plate but allows first member to approach and move away from support plate. Output element moves apart from input element to cut off driving force when second member is in first rotational position. When second member rotates to second rotational position, output element outputs driving force transmitted from input element.
摘要:
Clutch mechanism includes support plate, input element to which driving force is input, output element configured to rotate upon receiving driving force, first elastic member configured to bias output element toward support plate, first member including sliding arm inserted through through-hole of support plate and first slide surface, and second member configured to accommodate first member and including second slide surface. Insertion of the sliding arm into through-hole prevents rotation of first member with respect to support plate but allows first member to approach and move away from support plate. Output element moves apart from input element to cut off driving force when second member is in first rotational position. When second member rotates to second rotational position, output element outputs driving force transmitted from input element.
摘要:
An optical waveguide plate for a surface light emitting apparatus and a surface light emitting apparatus using the optical waveguide plate that provides excellent uniformity in surface emission is disclosed. The optical waveguide plate comprises an end face introducing light emitted from a light source, and a light emitting surface outputting light introduced from the end face. The end face has a light introducing portion comprising a plurality of notched prisms which disperse incident light. The intervals between two adjacent prisms are set to become greater in proportion to the distance from the center of the light introducing portion. The angles of the prisms are also adjusted to provide uniform surface emission.
摘要:
A driving force transmission mechanism (40) includes: a first support portion (31) for supporting an end portion of a rotation shaft (1aa) of a photosensitive drum (1a) on a second driving force transmission gear (49) side; a second support portion (33) arranged opposite to the photosensitive drum (1a) across the first support portion (31); a shaft (51) provided so as to protrude from the second support portion (33) to the photosensitive drum (1a) side; and a multi-step gear (47) rotatably supported by the shaft (51), the multi-step gear including a driving force input gear portion (47a) and a driving force output gear portion (47b). Between the driving force input gear portion (47a) and the driving force output gear portion (47b), there is formed a peripheral surface portion (47c) rotatably supported by a bearing member (53) provided into a second through-hole (31a) of the first support portion (31).