Abstract:
Provided is a silicon carbide ceramic having a small amount of resistivity change due to temperature change and being capable of generating heat by current application; and containing silicon carbide crystals having 0.1 to 25 mass % of 4H—SiC silicon carbide crystals and 50 to 99.9 mass % of 6H—SiC silicon carbide crystals, preferably having a nitrogen content of 0.01 mass % or less, more preferably containing two or more kinds of silicon carbide particles containing silicon carbide crystals and silicon for binding these silicon carbide particles to each other and having a silicon content of from 10 to 40 mass %.
Abstract:
The honeycomb structure includes a honeycomb structure body and a pair of electrode members disposed on a side surface of the honeycomb structure body, each of the pair of electrode members is shaped in the form of a band extending in a cell extending direction, and in a cross section perpendicular to the extending direction of cells, one electrode member is disposed on a side opposite to the other electrode member via a center of the honeycomb structure body, one or more slits opened in the side surface are formed in the honeycomb structure body, the honeycomb structure body has a charging material charged into the at least one slit, the charging material contains aggregates and a neck material, and a ratio (α2/α1) of a thermal expansion coefficient α2 of the charging material to a thermal expansion coefficient α1 of the honeycomb structure body is from 0.6 to 1.5.
Abstract:
Provided is a method for producing a silicon carbide ceramic easily and simply producing a silicon carbide ceramic having a small amount in resistivity change due to temperature change and being capable of generating heat by current application; and having a forming raw material preparing step of mixing two or more kinds of silicon carbide ceramic powders containing 4H—SiC silicon carbide crystals at respectively different content ratio to prepare a forming raw material; a forming step of forming the forming raw material into a formed body; and a firing step of firing the formed body to produce a silicon carbide ceramic being adjusted at a content ratio of 4H—SiC silicon carbide crystal to a desired value.
Abstract:
There is disclosed a manufacturing method of a honeycomb structure including a formed honeycomb body preparing step of extruding a forming raw material containing a ceramic raw material and an organic binder, to prepare a formed honeycomb body having partition walls with which a plurality of cells are formed to define through channels of a fluid, and an outer peripheral wall; a dried honeycomb body preparing step of drying the formed honeycomb body; a honeycomb body with unfired electrodes preparing step of applying an electrode forming slurry containing a ceramic raw material and water to a side surface of the dried honeycomb body, and then maintaining the honeycomb body in a temperature range of 0 to 80° C. for three seconds to 48 hours to form the unfired electrodes; and a honeycomb structure preparing step of drying and firing the honeycomb body with the unfired electrodes.
Abstract:
There is disclosed a honeycomb structure including a tubular honeycomb structure part having porous partition walls with which a plurality of cells are formed and an outer peripheral wall, and a pair of electrode parts arranged on a side surface of the honeycomb structure part, an electrical resistivity of the honeycomb structure part is from 10 to 200 Ωcm, each of the pair of electrode parts is formed into a band-like shape extending in a direction in which the cells extend, in a cross section perpendicular to the extending direction of the cells, the one electrode part is disposed opposite to the other electrode part via the center of the honeycomb structure part, and the electrode part has portions having a thickness of 0 to 70% of the maximum thickness of the electrode part.
Abstract:
A honeycomb structure including a tubular honeycomb structure portion having: porous partition walls with which a plurality of cells extending from one end surface to the other end surface are formed to partition through channels of a fluid; and an outer peripheral wall positioned on an outermost periphery, an electrical resistivity of the partition walls is from 1 to 200 Ωcm, at least a part of the outer peripheral wall is formed by a low Young's modulus portion configured to have a Young's modulus lower than that of the partition walls, and a ratio of the Young's modulus of the low Young's modulus portion to the Young's modulus of the partition walls is from 2 to 95%. Provided is a honeycomb structure which is a catalyst carrier and also functions as a heater when a voltage is applied thereto and which has an excellent heat shock resistance.