Abstract:
A press-formed product is shaped by press-working from a tailored blank made up of a plurality of metal sheets butt-welded together. The press-formed product includes a flange section, and an arc-shaped area which is an area of the flange section which is formed by stretch flange deformation, and in which an inner peripheral edge is open. A weld line of the tailored blank intersects with the inner peripheral edge and an outer peripheral edge of the arc-shaped area. An angle θ formed by the weld line and a maximum principal strain direction of the stretch flange deformation is 17 to 84°.
Abstract:
The present invention provides a spot welding method for a member to be welded constituted of a plurality of steel sheets that are overlapped with each other at at least a welding zone, in which at least an overlapped face of at least one of the plurality of steel sheets at the welding zone is coated with zinc plating, a total sheet thickness t (mm) of the plurality of steel sheets is 1.35 mm or more, a squeeze time St (seconds) from the time when welding electrodes are brought into contact with the member to be welded to the time when electric current flow for welding starts satisfies “0.020≤St”, and a hold time Ht( seconds) after welding from the time when electric current flow for welding between the welding electrodes ends to the time when the welding electrodes and the member to be welded are brought out of contact satisfies “0.015t2+0.020≤Ht”.
Abstract:
An automobile structural member (2) has a closed transverse section shape constituted with a first composing member (12) and a second composing member (13). The first composing member (12) has a vertical wall portion (12c), a bent portion (12b), and an inward flange (12a), and has a load transmission portion (20) formed in at least a part of a region being a region between the bent portion (12b) and the second composing member (13) and being a region of an extension of the vertical wall portion (12c) toward the second composing member (13) and which joins the bent portion (12b) and the second composing member (13). Thereby, a bending and crushing performance can be improved.
Abstract:
A brazed joint having excellent tensile strength (TSS and CTS) and a method of production of the same are provided. A sheet combination 200 comprised of steel sheets 210, 220 between which a brazing filler metal 230 is clamped is heated at a temperature of the Ac3 point of the steel sheet (matrix material) or more. The Ar3 point of the regions near the brazing filler metal at the steel sheets is made higher than the Ar3 point of the steel sheets (matrix material), then the quenching start temperature X is made a temperature of the Ar3 point of the steel sheet (matrix material) or less and hot stamping is performed to produce a brazed joint.
Abstract:
A overlapped body 10 comprising steel plates 1a and 1b and satisfying (TS1×t1+TS2×t2)/(t1+t2)≥440 is energized while being sandwiched and pressed by a pair of electrodes 2a and 2b to form a molten pool 4b at a steel plate interface 4 and thereby to join the steel plates 1a and 1b. TS1 represents the tensile strength (MPa) of the steel plate 1a, t1 represents the thickness (mm) of the steel plate 1a, TS2 represents the tensile strength (MPa) of the steel plate 1b, and t2 represents the thickness (mm) of the steel plate 1b. An energization point 4a is formed at the steel plate interface 4, and spot welding is performed such that the molten pool 4b is formed at a position at a horizontal distance W of 20 mm or less from the energization point 4a.
Abstract:
There is provided a resistance spot welding apparatus including a first rod-shaped electrode body, second rod-shaped electrode body, first ring-shaped member, second ring-shaped member, first elastic body, and second elastic body. The first rod-shaped electrode body and second rod-shaped electrode body are arranged facing each other, the first rod-shaped electrode body is inserted into a through hole of the first ring-shaped member, the first elastic body is connected to an opposite side of first ring-shaped member to second rod-shaped electrode body side, the first rod-shaped electrode body and first ring-shaped member are not electrically connected to each other, the second rod-shaped electrode body is inserted into a through hole of the second ring-shaped member, the second elastic body is connected to an opposite side of second ring-shaped member to first rod-shaped electrode body side, and the second rod-shaped electrode body and second ring-shaped member are not electrically connected each other.
Abstract:
A joining structure of the invention includes a first metal sheet and a pair of second metal sheets. Each of the pair of second metal sheets is overlapped on the first metal sheet in a state where an end surface of one of the second metal sheets and an end surface of the other second metal sheet face each other, and the end surfaces that face each other are integrally joined to the first metal sheet by means of a single mass of melted metal.
Abstract:
An overlapped body 10 includes at least three steel plates 1a, 1b and 1c and in which at least one steel plate interface 2a has a contact resistance different from the contact resistance of another steel plate interface 2b. A molten pool is formed at the steel plate interfaces so as to join the steel plates 1a, 1b and 1c, and an energization point 5 is formed at the steel plate interface 2b having the largest contact resistance. Initial spot welding is performed under a condition in which a branch current is generated in the energization point 5 so as to form the molten pool. By doing so, it makes it difficult to generate the expulsion and surface flash at the steel plate interface where resistive heating is large and form the molten pool having a sufficiently large size at the steel plate interface where resistive heating is small.
Abstract:
A method of welding an overlapped portion according to the present invention in which a plurality of steel sheet members are joined at an overlapped portion, and at least one of the plurality of steel sheet members contains martensite, includes: forming a spot-welded portion having a nugget in the overlapped portion; and emitting a laser beam to form a melted and solidified portion crossing an end of the nugget and located between the nugget and a position externally spaced apart from an end of the nugget by not less than 3 mm, this melted and solidified portion being formed in the steel sheet member containing the martensite so as to have a depth of not less than 50% of the thickness of the steel sheet member containing the martensite at a position externally spaced apart from the end of the nugget by 1 mm.
Abstract:
Provided is a spot welding machine able to perform spot welding in which the desired nugget size is formed while suppressing spatter even if the strengths or thicknesses of the metal sheets change, the machine comprising: a pair of electrode tips, a pair of pressing members arranged around the tips, a first power supply, first and second drive mechanisms, and a pressing force control part, wherein the tips and the pressing members are respectively arranged facing each other so as to be able to sandwich a set of sheets between them, the first drive mechanisms give pressing forces pressing the tips against the sheets, the second drive mechanisms give pressing forces pressing the pressing members against the sheets, and the control part independently controls the pressing forces given by the first and second drive mechanisms.