摘要:
Provided is a negative electrode active material that can improve the discharge capacity per volume and charge-discharge cycle characteristics. The negative electrode active material of the present embodiment includes a powder material and an oxide layer. The powder material contains an alloy phase which undergoes thermoelastic diffusionless transformation when releasing metal ions or occluding the metal ions. The oxide layer is formed on the surface of the powder material, and has a thickness of not more than 10 nm.
摘要:
Provided is a negative electrode active material which can improve discharge capacity per amount and charge-discharge cycle characteristics. The negative electrode active material of the present embodiment contains at least one of material A and material B, and material C: material A: carbonaceous powder material in which a ratio of a peak intensity at 1360 cm−1 with respect to a peak intensity at 1580 cm−1 in the Raman spectrum is not more than 0.5; material B: carbonaceous powder material in which a ratio of a peak intensity at 1360 cm−1 with respect to a peak intensity at 1580 cm−1 in the Raman spectrum is more than 0.5; material C: powder material whose main component is an active substance made up of an alloy phase. This alloy phase undergoes thermoelastic diffusionless transformation when releasing metal ions or occluding the metal ions.
摘要:
A support carbon material able to support a catalyst metal in a highly dispersed state and resistant to the flooding phenomenon and with little voltage drop even at the time of large current power generation under high humidity conditions and a catalyst using the same, specifically, a support carbon material for solid polymer type fuel cell use comprised of a porous carbon material which has a pore volume and a pore area found by the BJH analysis method from a nitrogen adsorption isotherm in an adsorption process of a radius 2 nm to 50 nm pore volume VA of 1 ml/g to 5 ml/g and a radius 2 nm to 50 nm pore area S2-50 of 300 m2/g to 1500 m2/g and a ratio (V5-25/VA) of radius 5 nm to 25 nm pore volume V5-25 (ml/g) to said pore volume VA (ml/g) of 0.4 to 0.7 and a ratio (V2-5/VA) of radius 2 nm to 5 nm pore volume V2-5 (ml/g) to the same of 0.2 to 0.5 and a catalyst using the same.
摘要:
A carbon material for catalyst carrier use excellent in both durability and power generation performance under operating conditions at the time of low humidity, in particular both durability of a carbon material for catalyst carrier use with respect to repeated load fluctuations due to startup and shutdown and power generation performance under operating conditions at the time of low humidity, and a catalyst for solid-polymer fuel cell use prepared using the same etc. are provided. To solve this technical problem, according to one aspect of the present invention, there is provided a carbon material for catalyst carrier use satisfying the following (A) to (D): (A) an oxygen content OICP of 0.1 to 3.0 mass % contained in the carbon material for catalyst carrier use; (B) a residual amount of oxygen O1200° C. of 0.1 to 1.5 mass % remaining after heat treatment in an inert gas (or vacuum) atmosphere at 1200° C.; (C) a BET specific surface area of 300 to 1500 m2/g; and (D) a G-band half-width ΔG of 30 to 70 cm−1 detected in a range of 1550 to 1650 cm−1 of the Raman spectrum.
摘要:
The present invention provides a novel and improved metal-air battery in which a lot of catalyst can be disposed in a triple phase boundary, and further, battery properties can be improved. In the metal-air battery according to the present invention, a catalyst layer of an air electrode of a metal-air battery contains a catalyst element and a carbon material, the carbon material comprises two materials of a carbon material A supporting thereon the catalyst element and a carbon material B not supporting the catalyst element, the catalyst layer comprises an agglomerate X containing the catalyst element, the carbon material A and the carbon material B as main components and an agglomerate Y containing the carbon material B as a main component, and the agglomerate X is a continuum and the agglomerate Y is dispersed in the agglomerate X.
摘要:
Provided is a negative electrode active material that can improve the discharge capacity per volume and charge-discharge cycle characteristics. The negative electrode active material according to the present embodiment contains an alloy phase. The alloy phase undergoes thermoelastic diffusionless transformation when releasing metal ions or occluding metal ions. The oxygen content of the negative electrode active material is not more than 5000 ppm in mass.
摘要:
Provided is an electrode active material containing a clathrate compound that is more likely to withstand load involved in repetition of penetration and desorption of, e.g., lithium ions compared to no guest substance-encapsulating silicon clathrate compounds. An electrode active material according to the present invention includes a clathrate compound. The clathrate compound contains a crystal lattice and a guest substance. The guest substance is encapsulated in the crystal lattice. It is preferable that the clathrate compound be a main component of the electrode active material.
摘要:
Provided is a composite particle which can improve the capacity per volume and charge-discharge cycle characteristics. The composite particle includes a plurality of specific particles and a binding material. The specific particle contains an alloy phase. The alloy phase undergoes thermoelastic diffusionless transformation when releasing metal ions or occluding metal ions. The binding material contains at least one of non-graphite carbon and a carbon precursor. The plurality of specific particles bind with each other via the binding material.