Abstract:
A method for use in optical measurements on patterned structures, the method including performing a number of optical measurements on a structure with a measurement spot configured to provide detection of light reflected from an illuminating spot at least partially covering at least two different regions of the structure, the measurements including detecting light reflected from the at least part of the at least two different regions within the measurement spot, the detected light including interference of at least two complex electric fields reflected from the at least part of the at least two different regions, and being therefore indicative of a phase response of the structure, carrying information about properties of the structure.
Abstract:
A data analysis method and system are presented for use in determining one or more parameters of a patterned structure located on top of an underneath layered structure. According to this technique, input data is provided which includes first measured data PMD being a function ƒ of spectral intensity Iλ and phase φ, PMD=ƒ(Iλ;φ), corresponding to a complex spectral response of the underneath layered structure, and second measured data Smeas indicative of specular reflection spectral response of a sample formed by the patterned structure and the underneath layered structure. Also provided is a general function F describing a relation between a theoretical optical response Stheor of the sample and a modeled optical response Smodel of the patterned structure and the complex spectral response PMD of the underneath layered structure, such that Stheor=F(Smodel; PMD). The general function is then utilized for comparing the second measured data Smeas and the theoretical optical response Stheor, and determining parameter(s) of interest of the top structure.
Abstract:
A method and system are presented for use in inspection of via containing structures. According to this technique, measured data indicative of a spectral response of a via-containing region of a structure under measurements is processed, and, upon identifying a change in at least one parameter of the spectral response with respect to a spectral signature of the via-containing region, output data is generated indicative of a possible defect at an inner surface of the via.
Abstract:
A method and system are presented for use in measuring on patterned samples, aimed at determining asymmetry in the pattern. A set of at least first and second measurements on a patterned region of a sample is performed, where each of the measurements comprises: directing illuminating light onto the patterned region along an illumination channel and collecting light reflected from the illuminated region propagating along a collection channel to be detected, such that detected light from the same patterned region has different polarization states which are different from polarization of the illuminating light, and generating a measured data piece indicative of the light detected in the measurement. Thus, at least first and second measured data pieces are generated for the at least first and second measurements on the same patterned region. The at least first and second measured data pieces are analyzed and output data is generated being indicative of a condition of asymmetry in the patterned region.
Abstract:
A method and system are presented for use in optical measurements on patterned structures. The method comprises performing a number of optical measurements on a structure with a measurement spot configured to provide detection of light reflected from an illuminating spot at least partially covering at least two different regions of the structure. The measurements include detection of light reflected from said at least part of the at least two different regions comprising interference of at least two complex electric fields reflected from said at least part of the at least two different regions, and being therefore indicative of a phase response of the structure, carrying information about properties of the structure.
Abstract:
Method and system for measuring one or more parameters of a patterned structure, using light source producing an input beam of at least partially coherent light in spatial and temporal domains, a detection system comprising a position sensitive detector for receiving light and generating measured data indicative thereof, an optical system configured for focusing the input light beam onto a diffraction limited spot on a sample's surface, collecting an output light returned from the illuminated spot, and imaging the collected output light onto a light sensitive surface of the position sensitive detector, where an image being indicative of coherent summation of output light portions propagating from the structure in different directions.
Abstract:
A method and system are presented for use in inspection of via containing structures. According to this technique, measured data indicative of a spectral response of a via-containing region of a structure under measurements is processed, and, upon identifying a change in at least one parameter of the spectral response with respect to a spectral signature of the via-containing region, output data is generated indicative of a possible defect at an inner surface of the via.
Abstract:
A method and system are presented for use in X-ray based measurements on patterned structures. The method comprises: processing data indicative of measured signals corresponding to detected radiation response of a patterned structure to incident X-ray radiation, and subtracting from said data an effective measured signals substantially free of background noise, said effective measured signals being formed of radiation components of reflected diffraction orders such that model based interpretation of the effective measured signals enables determination of one or more parameters of the patterned structure, wherein said processing comprises: analyzing the measured signals and extracting therefrom a background signal corresponding to the background noise; and applying a filtering procedure to the measured signals to subtract therefrom signal corresponding to the background signal, resulting in the effective measured signal.
Abstract:
Determining parameters of a patterned structure located on top of an underneath layered structure, where input data is provided which includes first measured data PMD being a function ƒ of spectral intensity Iλ and phase ϕ, PMD=ƒ(Iλ; ϕ), corresponding to a complex spectral response of the underneath layered structure, and second measured data Smeas indicative of specular reflection spectral response of a sample formed by the patterned structure and the underneath layered structure, and where a general function F is also provided describing a relation between a theoretical optical response Stheor of the sample and a modeled optical response Smodel of the patterned structure and the complex spectral response PMD of the underneath layered structure, such that Stheor=F(Smodel; PMD), where the general function is then utilized for comparing the second measured data Smeas and the theoretical optical response Stheor, and determining parameter(s) of interest of the top structure.
Abstract:
A metrology system is presented for measuring parameters of a structure. The system comprises: an optical system and a control unit. The optical system is configured for detecting light reflection of incident radiation from the structure and generating measured data indicative of angular phase of the detected light components corresponding to reflections of illuminating light components having different angles of incidence. The control unit is configured for receiving and processing the measured data and generating a corresponding phase map indicative of the phase variation along at least two dimensions, and analyzing the phase map using modeled data for determining one or more parameters of the structure.