Abstract:
A system architecture conserves memory bandwidth by including compression utility to process data transfers from the cache into external memory. The cache decompresses transfers from external memory and transfers full format data to naive clients that lack decompression capability and directly transfers compressed data to savvy clients that include decompression capability. An improved compression algorithm includes software that computes the difference between the current data word and each of a number of prior data words. Software selects the prior data word with the smallest difference as the nearest match and encodes the bit width of the difference to this data word. Software then encodes the difference between the current stride and the closest previous stride. Software combines the stride, bit width, and difference to yield final encoded data word. Software may encode the stride of one data word as a value relative to the stride of a previous data word.
Abstract:
One embodiment of the present invention sets forth a technique for increasing available storage space within compressed blocks of memory attached to data processing chips, without requiring a proportional increase in on-chip compression status bits. A compression status bit cache provides on-chip availability of compression status bits used to determine how many bits are needed to access a potentially compressed block of memory. A backing store residing in a reserved region of attached memory provides storage for a complete set of compression status bits used to represent compression status of an arbitrarily large number of blocks residing in attached memory. Physical address remapping (“swizzling”) used to distribute memory access patterns over a plurality of physical memory devices is partially replicated by the compression status bit cache to efficiently integrate allocation and access of the backing store data with other user data.
Abstract:
A method for managing memory traffic includes causing first data to be written to a data cache memory, where a first write request comprises a partial write and writes the first data to a first portion of the data cache memory, and further includes tracking the number of partial writes in the data cache memory. The method further includes issuing a fill request for one or more partial writes in the data cache memory if the number of partial writes in the data cache memory is greater than a predetermined first threshold.
Abstract:
In one embodiment of the present invention a cache unit organizes data stored in an attached memory to optimize accesses to compressed data. In operation, the cache unit introduces a layer of indirection between a physical address associated with a memory access request and groups of blocks in the attached memory. The layer of indirection—virtual tiles—enables the cache unit to selectively store compressed data that would conventionally be stored in separate physical tiles included in a group of blocks in a single physical tile. Because the cache unit stores compressed data associated with multiple physical tiles in a single physical tile and, more specifically, in adjacent locations within the single physical tile, the cache unit coalesces the compressed data into contiguous blocks. Subsequently, upon performing a read operation, the cache unit may retrieve the compressed data conventionally associated with separate physical tiles in a single read operation.
Abstract:
In one embodiment of the present invention a cache unit organizes data stored in an attached memory to optimize accesses to compressed data. In operation, the cache unit introduces a layer of indirection between a physical address associated with a memory access request and groups of blocks in the attached memory. The layer of indirection—virtual tiles—enables the cache unit to selectively store compressed data that would conventionally be stored in separate physical tiles included in a group of blocks in a single physical tile. Because the cache unit stores compressed data associated with multiple physical tiles in a single physical tile and, more specifically, in adjacent locations within the single physical tile, the cache unit coalesces the compressed data into contiguous blocks. Subsequently, upon performing a read operation, the cache unit may retrieve the compressed data conventionally associated with separate physical tiles in a single read operation.
Abstract:
One embodiment of the present invention sets forth a technique for processing commands received by an intermediary cache from one or more clients. The technique involves receiving a first write command from an arbiter unit, where the first write command specifies a first memory address, determining that a first cache line related to a set of cache lines included in the intermediary cache is associated with the first memory address, causing data associated with the first write command to be written into the first cache line, and marking the first cache line as dirty. The technique further involves determining whether a total number of cache lines marked as dirty in the set of cache lines is less than, equal to, or greater than a first threshold value, and: not transmitting a dirty data notification to the frame buffer logic when the total number is less than the threshold value, or transmitting a dirty data notification to the frame buffer logic when the total number is equal to or greater than the first threshold value.