Abstract:
The present disclosure relates to compositions, kits, and methods of making RNA vaccines having an appropriate cap structure. Systems, apparatus, compositions, and/or methods may include and/or use, in some embodiments, non-naturally occurring single-chain RNA capping enzymes. In some embodiments, an RNA capping enzyme may include an FCE variant having (a) an amino acid sequence at least 90% identical to positions 1 to 878 of SEQ ID NO: 1, and/or (b) one or more substitutions relative to SEQ ID NO: 1 at a position selected from positions corresponding to positions 215, 337, 572, 648, and 833 (e.g., a position selected from positions corresponding to position 215, 337, and 572) of SEQ ID NO: 1.
Abstract:
Provided herein is a method for efficiently capping RNA in vitro. In some embodiments the capping reaction may be done at high temperature using Vaccinia capping enzyme or a variant thereof. In other embodiments, the capping reactions may comprise a capping enzyme from a large virus of amoeba, e.g., Faustovirus, mimivirus or moumouvirus, or a variant thereof. Compositions and kits for practicing the method are also provided.
Abstract:
An improved adapter design for ligation to target RNA in a library is described which enables target RNAs that would normally be under-represented or not represented at all in a cDNA library or a PCR product of the cDNA library, to be represented with average frequency.
Abstract:
Kits and methods are provided that utilize a mesophilic strand displacing polymerase selected from Bsu DNA polymerase (large fragment) and Klenow in Loop mediated amplification (LAMP) at temperatures in the range of 34° C.-52ºC. This contrasts with 60° C.-65° C. required for standard Bst polymerase dependent LAMP. The reduced temperature of the LAMP reaction enables the use of other proteins that are temperature sensitive in a one-step reaction. For example, a Cas protein such as Cas12a may be used with a target nucleic acid specific guide RNA and optionally a reporter oligonucleotide containing a quencher and a fluorophore or lateral flow reagents to determine the presence of pathogens in a sample.
Abstract:
Provided herein, among other things, is a method for deaminating a double-stranded nucleic acid. In some embodiments, the method may comprise contacting a double-stranded DNA substrate that comprises cytosines and a double-stranded DNA deaminase having an amino acid sequence that is at least 80% identical to any of SEQ ID NOS: 21, 40, 47, 49, 50, 55, 58, 59, 62, 63, 65, 67, 70, 71, 76, 106, 107, 110, 112, 114, 117, 163 and/or 164 to produce a deamination product that comprises deaminated cytosines. Enzymes and kits for performing the method are also provided.
Abstract:
The present disclosure relates to compositions, kits, and methods of making RNA vaccines having an appropriate cap structure. Systems, apparatus, compositions, and/or methods may include and/or use, in some embodiments, non-naturally occurring single-chain RNA capping enzymes. In some embodiments, an RNA capping enzyme may include an FCE variant having (a) an amino acid sequence at least 90% identical to positions 1 to 878 of SEQ ID NO: 1, and/or (b) one or more substitutions relative to SEQ ID NO: 1 at a position selected from positions corresponding to positions 215, 337, 572, 648, and 833 (e.g., a position selected from positions corresponding to position 215, 337, and 572) of SEQ ID NO: 1.
Abstract:
An improved adapter design for ligation to target RNA in a library is described which enables target RNAs that would normally be under-represented or not represented at all in a cDNA library or a PCR product of the cDNA library, to be represented with average frequency.