摘要:
Damaging forming deposits and etching is reduced in an ion source by introducing an oxygenated gas during operation of the ion source. Embodiments include an ion source in fluid communication with a source of oxygenated gas and introducing about 1% to about 10% of carbondioxide as the oxygenated gas together with a feed material.
摘要:
The invention provides core stacks for flash memory with an anti-reflective interpoly dielectric. Instead of requiring an anti-reflective coating at the top of the a stack, the present invention uses the interpoly layer as an anti-reflective coating in conjunction with a transmissive second polymer layer. Light is transmitted through the transmissive second polymer layer to the anti-reflective interpoly dielectric layer. The transmissive second polymer layer is formed from an amorphous silicon or polysilicon. Silicon oxynitride (SiON), as formed in the present invention, having a good dielectric constant K, is tailored in its index of refraction and in its thickness for utilization as both a good interpoly material and an anti-reflective coating.
摘要:
According to one embodiment, a memory cell structure comprises a semiconductor substrate, a first silicon oxide layer situated over the semiconductor substrate, a charge storing layer situated over the first silicon oxide layer, a second silicon oxide layer situated over the charge storing layer, and a gate layer situated over the second silicon oxide layer. In the exemplary embodiment, the charge storing layer comprises silicon nitride having reduced hydrogen content, e.g., in the range of about 0 to 0.5 atomic percent. As a result, the reduced hydrogen content reduces the charge loss in the charge storing layer. The reduced charge loss in the charge storing layer has the benefit of reducing threshold voltage shifts, programming data loss, and programming capability loss in the memory device, thereby improving memory device performance.
摘要:
The present invention provides a MOS structure and fabrication process for fabricating the substrate structure whereby a thin layer of silicon oxynitride, acting as a reaction barrier layer, and a tantalum pentoxide layer are formed in the gate region for controlling induction of electric charge in the gate region and thereby control the flow of current through the device. The high dielectric characteristic of the tantalum pentoxide facilitates blocking the flow of current in accordance with the applied voltage, and which in an off-state of the device, minimizes the gate leakage current. The silicon oxynitride barrier is formed by using a pre-deposition process of annealing the silicon substrate surface in a nitric oxide (NO) environment. The anneal may be a rapid thermal anneal (RTA) process for 10 seconds to 5 minutes at 400° C. to 1000° C. in the nitric oxide NO ambient. The annealing process produces the thin silicon oxynitride layer needed for depositing the tantalum pentoxide layer. After formation of the silicon oxynitride layer, the MOS structure undergoes a CVD deposition process for formation of a tantalum pentoxide layer on the silicon nitride surface. The silicon oxynitride layer formed using the pre-deposition anneal in nitric oxide (NO) (1) provides a hydrogen-free reaction barrier for depositing the tantalum pentoxide dielectric layer, (2) is formed at a lower temperature than a silicon nitride reaction barrier formed using ammonia, and (3) can function, when used alone, as a dielectric layer in applications that do not require the stringent off-state leakage current requirements. Other insulating material having a dielectric constant in the range of 25 to 80, such as titanium dioxide, may be formed over said silicon oxynitride layer for functioning as a reaction barrier layer.
摘要:
A dual gate semiconductor device, such as a flash memory semiconductor device, whose plurality of dual gate sidewall spacer structure is formed by a first and second anti-reflection fabrication process. The sidewall spacers of the dual transistor gate structures in the core memory region are left coated with the second anti-reflective coating material, after being used for gate patterning, to act as sidewall spacers for use in subsequent ion implant and salicidation fabrication steps. The second anti-reflective coating material is selected from a material group such as silicon oxynitride (SiON), silicon nitride (Si3N4), and silicon germanium (SiGe), or other anti-reflective coating material having optical properties and that are compatible with the subsequent implant and salicidation steps.
摘要翻译:诸如闪存半导体器件的双栅极半导体器件,其多个双栅极侧壁间隔结构通过第一和第二抗反射制造工艺形成。 核心存储器区域中的双晶体管栅极结构的侧壁间隔物在用于栅极图案化之后被第二抗反射涂层材料涂覆以用作用于后续离子注入和盐化制造步骤的侧壁间隔物。 第二抗反射涂层材料选自诸如氮氧化硅(SiON),氮化硅(Si 3 N 4)和硅锗(SiGe)的材料组或具有光学性质的其它抗反射涂层材料,并且与 随后的植入和盐化步骤。
摘要:
A flash memory structure and fabrication process whereby stacks of a first poly-crystalline or of an amorphous silicon material (polysilicon), having a bottom layer member of an interpoly dielectric stack, are processed for formation of a post-treatment layer over the bottom interpoly dielectric layer member. The post-treatment layer is essentially a solid material formed by a chemical reaction for purposes of improving the reliability of an interpoly dielectric stack and results in changes to the capacitor coupling ratio of the flash memory element and allows the use of new power supply and programming voltages. The post-treatment layer is formed by exposing the polysilicon stacks with the bottom interpoly dielectric layer member to a selected one of at least three ambient reagent gases. The selected ambient reagent gases and exposure of the semiconductor structure being performed in either a batch furnace, a single wafer rapid thermal anneal tool, or a plasma chamber. Then at least three ambient reagent gases are selected from a group of reagent gases consisting essentially of N2O/NO, O2/H2O/O3, and NH3/N2. Any of the ambient reagent gases may be selected and utilized in a selected fabrication tools for pre-treating the surface of the bottom interpoly dielectric stack member prior to forming the complete interpoly dielectric stack of the flash memory element. The subsequently formed interpoly dielectric stack being a modified ONO stack where the post-treatment layer is disposed between the bottom silicon dioxide layer and the silicon nitride and silicon dioxide layers.
摘要翻译:闪存结构和制造工艺,其中处理具有多层电介质堆叠的底层构件的第一多晶体或非晶硅材料(多晶硅)的堆叠,以在底部间隔层上形成后处理层 电介质层构件。 后处理层基本上是通过化学反应形成的固体材料,目的是改善多聚电介质堆叠的可靠性,并导致闪速存储元件的电容器耦合比的变化,并允许使用新的电源和编程 电压。 后处理层通过将具有底部间隔电介质层构件的多晶硅堆叠暴露于至少三种环境试剂气体中选定的一种来形成。 选择的环境试剂气体和半导体结构的暴露在分批炉,单晶片快速热退火工具或等离子体室中进行。 然后,从基本上由N 2 O / NO,O 2 / H 2 O / O 3和NH 3 / N 2组成的一组试剂气体中选择至少三种环境试剂气体。 可以在选择的制造工具中选择和使用任何环境试剂气体,以在形成闪速存储元件的完整的多余介电叠层之前预处理底部多聚电介质堆叠构件的表面。 随后形成的互间电介质叠层是修饰的ONO叠层,其中后处理层设置在底部二氧化硅层和氮化硅和二氧化硅层之间。
摘要:
A semiconductor component having smooth, void-free conductive layers and a method for manufacturing the semiconductor component. Surface features such as gate structures are formed on a semiconductor substrate. A layer of insulating material is formed on the gate structures and a layer of polysilicon is formed on the layer of insulating material. The layer of polysilicon is annealed in a hydrogen ambient to redistribute the silicon atoms of the polysilicon layer. Redistribution of the atoms fills voids that may be present in the layer of polysilicon and smoothes the surface of the layer of polysilicon. Another layer of polysilicon is formed over the annealed layer of polysilicon. This polysilicon layer is annealed in a hydrogen ambient to redistribute the silicon atoms and smooth the surface of the polysilicon layer, thereby forming a subsequently annealed polysilicon layer. Control gate structures are formed from the subsequently annealed polysilicon layer.
摘要:
A flash memory structure and its fabrication process, whereby stacks, of a first poly-crystalline silicon material or an amorphous silicon material (polysilicon), are processed for formation of a pre-interpoly dielectric treatment layer over the first polysilicon material. The pre-interpoly dielectric treatment layer being a solid material formed by a chemical reaction formed for purposes of improving the reliability of an interpoly dielectric member and results in changing the capacitor coupling ratio of the flash memory element and allows the use of new power supply and programming voltages. The pre-interpoly dielectric treatment layer is formed by exposing the polysilicon stacks to a selected one of at least three ambient reagent gases. The selected gaseous ambient and exposure of the polysilicon stacks being performed in a fabrication tool such as a batch furnace, a single wafer rapid thermal anneal tool, or a plasma chamber. The reagent gases consist essentially of: (1) nitrous oxide (N2O) and/or nitric oxide (NO), (2) oxygen (O2) and/or water (H2O), and (3) ammonia (NH3). Any one ambient reagent gas may be selected and utilized in any of the foregoing fabrication tools for pre-treating the surface of the first polysilicon stack prior to forming the interpoly dielectric structure member of the flash memory element. The interpoly dielectric member being a stack of silicon dioxide-silicon nitride-silicon dioxide material known as an ONO is thereon subsequently formed.
摘要:
A flash memory structure and its fabrication process, whereby stacks, of a first poly-crystalline silicon material or an amorphous silicon material (polysilicon), are processed for formation of a pre-interpoly dielectric treatment layer over the first polysilicon material. The pre-interpoly dielectric treatment layer being a solid material formed by a chemical reaction formed for purposes of improving the reliability of an interpoly dielectric member and results in changing the capacitor coupling ratio of the flash memory element and allows the use of new power supply and programming voltages. The pre-interpoly dielectric treatment layer is formed by exposing the polysilicon stacks to a selected one of at least three ambient reagent gases. The selected gaseous ambient and exposure of the polysilicon stacks being performed in a fabrication tool such as a batch furnace, a single wafer rapid thermal anneal tool, or a plasma chamber. The reagent gases consist essentially of: (1) nitrous oxide (N2O) and/or nitric oxide (NO), (2) oxygen (O2) and/or water (H2O), and (3) ammonia (NH3). Any one ambient reagent gas may be selected and utilized in any of the foregoing fabrication tools for pre-treating the surface of the first polysilicon stack prior to forming the interpoly dielectric structure member of the flash memory element. The interpoly dielectric member being a stack of silicon dioxide-silicon nitride-silicon dioxide material known as an ONO is thereon subsequently formed.