摘要:
According to one embodiment, a memory cell structure comprises a semiconductor substrate, a first silicon oxide layer situated over the semiconductor substrate, a charge storing layer situated over the first silicon oxide layer, a second silicon oxide layer situated over the charge storing layer, and a gate layer situated over the second silicon oxide layer. In the exemplary embodiment, the charge storing layer comprises silicon nitride having reduced hydrogen content, e.g., in the range of about 0 to 0.5 atomic percent. As a result, the reduced hydrogen content reduces the charge loss in the charge storing layer. The reduced charge loss in the charge storing layer has the benefit of reducing threshold voltage shifts, programming data loss, and programming capability loss in the memory device, thereby improving memory device performance.
摘要:
A dual gate semiconductor device, such as a flash memory semiconductor device, whose plurality of dual gate sidewall spacer structure is formed by a first and second anti-reflection fabrication process. The sidewall spacers of the dual transistor gate structures in the core memory region are left coated with the second anti-reflective coating material, after being used for gate patterning, to act as sidewall spacers for use in subsequent ion implant and salicidation fabrication steps. The second anti-reflective coating material is selected from a material group such as silicon oxynitride (SiON), silicon nitride (Si3N4), and silicon germanium (SiGe), or other anti-reflective coating material having optical properties and that are compatible with the subsequent implant and salicidation steps.
摘要翻译:诸如闪存半导体器件的双栅极半导体器件,其多个双栅极侧壁间隔结构通过第一和第二抗反射制造工艺形成。 核心存储器区域中的双晶体管栅极结构的侧壁间隔物在用于栅极图案化之后被第二抗反射涂层材料涂覆以用作用于后续离子注入和盐化制造步骤的侧壁间隔物。 第二抗反射涂层材料选自诸如氮氧化硅(SiON),氮化硅(Si 3 N 4)和硅锗(SiGe)的材料组或具有光学性质的其它抗反射涂层材料,并且与 随后的植入和盐化步骤。
摘要:
The invention provides core stacks for flash memory with an anti-reflective interpoly dielectric. Instead of requiring an anti-reflective coating at the top of the a stack, the present invention uses the interpoly layer as an anti-reflective coating in conjunction with a transmissive second polymer layer. Light is transmitted through the transmissive second polymer layer to the anti-reflective interpoly dielectric layer. The transmissive second polymer layer is formed from an amorphous silicon or polysilicon. Silicon oxynitride (SiON), as formed in the present invention, having a good dielectric constant K, is tailored in its index of refraction and in its thickness for utilization as both a good interpoly material and an anti-reflective coating.
摘要:
A MONOS device and method for making the device has a charge trapping dielectric layer, such as an oxide-nitride-oxide (ONO) layer, formed on a substrate. A recess is created through the ONO layer and in the substrate. A metal silicide bit line is formed in the recess and bit line oxide is formed on top of the metal silicide. A word line is formed over the ONO layer and the bit line oxide, and a low resistance silicide is provided on top of the word line. The silicide is formed by laser thermal annealing, for example.
摘要:
A non-volatile memory device for retention of data when electrical power is terminated. The non-volatile memory device includes at least one memory cell and a charge pump for stepping up the incoming voltage supply. The charge pump includes at least one capacitor, wherein the dielectric of the charge pump capacitor and the dielectric of the memory cell are formed during the same processing step.
摘要:
A method of manufacturing a semiconductor device includes forming an interface layer, a nitrided gate dielectric, a gate electrode, and source drain regions. The interface layer is formed in a substrate by laser processing. The nitrided gate dielectric is formed over the interface layer by laser processing. The gate electrode is formed over the substrate and the gate dielectric after the laser processing step, and source/drain regions are formed in the substrate proximate to the gate electrode.
摘要:
A method of protecting a SONOS flash memory cell from UV-induced charging, including fabricating a SONOS flash memory cell in a semiconductor device; and depositing over the SONOS flash memory cell at least one UV-protective layer, the UV-protective layer including a substantially UV-opaque material. A SONOS flash memory device, including a SONOS flash memory cell; and at least one UV-protective layer, in which the UV-protective layer comprises a substantially UV-opaque material, is provided. In one embodiment, the device includes a substantially UV-opaque contact cap layer.
摘要:
A manufacturing method for a MirrorBit® Flash memory includes providing a semiconductor substrate and depositing a charge-trapping dielectric material. First and second bitlines are implanted and a wordline material is deposited. A hard mask material is deposited over the wordline material. The hard mask material is of a material having the characteristic of being deposited rather than grown. A photoresist material is deposited over the wordline material and is patterned to form a patterned hard mask. The patterned photoresist material is removed. The wordline material is processed using the patterned hard mask to form a wordline. The patterned hard mask material is removed.
摘要:
A buried local interconnect and method of forming the same counterdopes a region of a doped substrate to form a counterdoped isolation region. A hardmask is formed and patterned on the doped substrate, with a recess being etched through the patterned hardmask into the counterdoped region. Dielectric spacers are formed on the sidewalls of the recess, with a portion of the bottom of the recess being exposed. A metal is then deposited in the recess and reacted to form silicide at the bottom of the recess. The recess is filled with fill material, which is polished. The hardmask is then removed to form a silicide buried local interconnect.
摘要:
A buried local interconnect and method of forming the same counterdopes a region of a doped substrate to form a counterdoped isolation region. A hardmask is formed and patterned on the doped substrate, with a recess being etched through the patterned hardmask into the counterdoped region. Dielectric spacers are formed on the sidewalls of the recess, with a portion of the bottom of the recess being exposed. A metal is then deposited in the recess and reacted to form silicide at the bottom of the recess. The recess is filled with fill material, which is polished. The hardmask is then removed to form a silicide buried local interconnect.