摘要:
A method is provided for fabricating transistors of first and second types in a single substrate. First and second active zones of the substrate are delimited by lateral isolation trench regions, and a portion of the second active zone is removed so that the second active zone is below the first active zone. First and second layers of semiconductor material are formed on the second active zone, so that the second layer is substantially in the same plane as the first active zone. Insulated gates are produced on the first active zone and the second layer. At least one isolation trench region is selectively removed, and the first layer is selectively removed so as to form a tunnel under the second layer. The tunnel is filled with a dielectric material to insulate the second layer from the second active zone of the substrate. Also provided is such an integrated circuit.
摘要:
An integrated circuit includes a semiconductor device forming a single photon source, and includes a MOS transistor on a silicon substrate. The MOS transistor has a mushroom shaped gate for outputting a single electron on its drain in a controlled manner in response to a control voltage applied to its gate. The transistor also includes at least one silicon compatible quantum box. The quantum box is electrically coupled to the drain region of the transistor, and is capable of outputting a single photon on reception of a single electron emitted by the transistor.
摘要:
A method for manufacturing silicon wells of various crystallographic orientations in a silicon support, including the steps of: forming a silicon layer having a first orientation on a silicon substrate having a second orientation; forming insulating walls, defining wells extend at least down to the border between the silicon substrate and the silicon layer; performing, in first wells, a chemical vapor etch (CVE) of the silicon layer by means of hydrochloric acid, in an epitaxy reactor, at a temperature ranging between 700° C. and 950° C.; and performing, in the first wells, a vapor-phase epitaxy on the silicon substrate in the presence of a precursor of silicon and hydrochloric acid, at a temperature ranging between 700° C. and 900° C. and up to the upper surface of the silicon layer.
摘要:
A method for forming a single-crystal semiconductor layer portion above a hollowed area, including growing by selective epitaxy on an active single-crystal semiconductor region a sacrificial single-crystal semiconductor layer and a single-crystal semiconductor layer, and removing the sacrificial layer. The epitaxial growth is performed while the active region is surrounded with a raised insulating layer and the removal of the sacrificial single-crystal semiconductor layer is performed through an access resulting from an at least partial removal of the raised insulating layer.
摘要:
A method for manufacturing silicon wells of various crystallographic orientations in a silicon support, including the steps of: forming a silicon layer having a first orientation on a silicon substrate having a second orientation; forming insulating walls, defining wells extend at least down to the border between the silicon substrate and the silicon layer; performing, in first wells, a chemical vapor etch (CVE) of the silicon layer by means of hydrochloric acid, in an epitaxy reactor, at a temperature ranging between 700° C. and 950° C.; and performing, in the first wells, a vapor-phase epitaxy on the silicon substrate in the presence of a precursor of silicon and hydrochloric acid, at a temperature ranging between 700° C. and 900° C. and up to the upper surface of the silicon layer.
摘要:
A method for low-temperature epitaxy at the surface of at least one plate made of a pure silicon- or silicon alloy (SiGe, SiC, SiGeC . . . )-based material, in a chemical vapor deposition (CVD) system, in particular a rapid thermal (RTCVD) system, which method includes the following steps: loading the plate into the equipment, at a loading temperature, preparing the surface for the deposition of new chemical species, and after preparing the surface, performing the deposition under low-temperature epitaxy conditions (>750° C.), in which method the preparation of the surface includes a step of passivation of the surface by injection of an active gas, or gas mixture.
摘要:
A layer of a semiconductor material is epitaxially grown on a single-crystal semiconductor structure and on a polycrystalline semiconductor structure. The epitaxial layer is then etched in order to preserve a non-zero thickness of said material on the single-crystal structure and a zero thickness on the polycrystalline structure. The process of growth and etch is repeated, with the same material or with a different material in each repetition, until a stack of epitaxial layers on said single-crystal structure has reached a desired thickness. The single crystal structure is preferably a source/drain region of a transistor, and the polycrystalline structure is preferably a gate of that transistor.
摘要:
A method for selectively etching single-crystal silicon-germanium in the presence of single-crystal silicon, including a chemical etch based on hydrochloric acid in gaseous phase at a temperature lower than approximately 700° C.
摘要:
A method for forming a single-crystal semiconductor layer portion above a hollowed area, including growing by selective epitaxy on an active single-crystal semiconductor region a sacrificial single-crystal semiconductor layer and a single-crystal semiconductor layer, and removing the sacrificial layer. The epitaxial growth is performed while the active region is surrounded with a raised insulating layer and the removal of the sacrificial single-crystal semiconductor layer is performed through an access resulting from an at least partial removal of the raised insulating layer.
摘要:
Metal contacts are self-positioned on a wafer of semiconductor product. Respective placement areas for a metal contact are determined by a selective deposition of a growth material over a region of the substrate surface (for example, through epitaxial growth). The growth material is surrounded by an insulating material. The grown material is then removed to form a void in the insulating material which coincides with the desired location of the metal contact. This removal of the grown material exposes the region on the substrate surface. Conductive material is then deposited to fill the void and thus form the metal contact directly with the region of the substrate surface.