摘要:
A high thermal conductivity circuit substrate is provided comprising a sintered aluminum nitride ceramic substrate consisting essentially of one member selected from the group of yttrium, the rare earth metals and the alkali earth metals and an electrically conductive thick film paste for a conductive layer formed on the substrate.
摘要:
According to the present invention, there is provided an aluminum nitride sintered body having a high thermal conductivity and essentially consisting of a AlN single-phase, containing 0.01 to 8,000 ppm of rare earth elements and less than 2,000 ppm of oxygen. According to the present invention, there is provided a method of fabricating an aluminum nitride sintered body having a high thermal conductivity and essentially consisting of AlN single-phase, containing 0.01 to 8,000 ppm of rare earth elements and less than 2,000 ppm of oxygen, wherein a molded body prepared by mixing and molding an aluminum nitride power having less than 7 wt % of oxygen and an average particle size of 0.05 to 5 .mu.m and with rare earth compounds of 0.01 to 15 wt % of based on rare earth elements content, or a sintered AlN body containing oxide grain boundary phases of 0.01 to 15 wt % of rare earth elements and 0.01 to 20 wt % of oxygen and (rare earth element)--Al--O compounds phases and/or (rare earth element)--O compounds phases, is fired in a reducing atmosphere at a temperature of 1,550 to 2,050.degree. C. for 4 hours or more.
摘要:
An aluminum nitride-based sintered body having a high thermal conductivity and a total oxygen content of 0.01 to 20% by weight which is prepared by mixing a main component of aluminum nitride powder containing 0.001 to 7% by weight of oxygen with 0.01 to 15% by weight of at least one of the group consisting of a powder of a rare earth element and/or a powder of a material containing the rare earth element (said 0.01 to 15% by weight being counted on the basis of the content of the rare earth element), and sintering said powder mixture.
摘要:
There is disclosed an aluminum sintered body prepared by sintering aluminum nitride and additives, which consists essentially of(a) aluminum nitride,(b) at least one compound selected from the group consisting of an aluminum compound of a rare earth metal, an aluminum compound of an alkaline earth metal, and an aluminum compound of a rare earth metal and an alkaline earth metal, and(c) at least one element selected from the transition elements consisting of Groups IVa, Va, VIa, VIIa and VIII of the periodic table, and/or at least one compound comprising the element, and the rare earth element, alkaline earth element and transition element are supplied by the additives.
摘要:
There are disclosed an aluminum sintered body comprising(a) aluminum nitride,(b) at least one compound selected from the group consisting of an aluminum compound of a rare earth metal, an aluminum compound of an alkaline earth metal, and an aluminum compound of a rare earth metal and an alkaline earth metal, and(c) at least one element selected from the transition elements consisting of Groups IVa, Va, VIa, VIIa and VIII of the periodic table, and/or at least one compound containing said element,and a process for preparing the same comprising mixing aluminum nitride with(i) at least one of compound selected from the group consisting of a rare earth metal and/or an alkaline earth metal; and(ii) at least one of element selected from the group consisting of a transition element of Groups IVa, Va, VIa, VIIa and VIII of the periodic table, and/or at least one of a compound containing said element;and then molding and sintering the mixture.
摘要:
Disclosed are an aluminum nitride sintered body comprising aluminum nitride, rare earth element-aluminum compounds and alkaline earth metal-aluminum compounds, and a process for producing an aluminum nitride sintered body, which comprises adding to aluminum nitride powder:(a) powder of at least one compound selected from the group consisting of rare earth element oxides, rare earth element fluorides and compounds capable of being converted into these oxides or fluorides by calcination, and(b) powder of at least one compound selected from the group consisting of alkaline earth metal oxides, alkali earth metal fluorides and compounds capable of being converted into these oxides or fluorides by calcination, in a total amount of 0.01 to 20 wt % as calculated on the weight of the oxides or the fluorides, and then molding and sintering the resultant mixture.
摘要:
A sialon based composite composite essentially consists of 5 wt % to 40 wt % of SiC fibers, 0.3 wt % to 10 wt % of an Hf component which is calculated in terms of Hf oxide, and the balance of sialon as a major constituent. In this case, the sialon is .alpha.-sialon or .beta.-sialon.
摘要:
A silicon carbide sintered body containing not less than 0.03% by weight of boron, a total of not more than 0.3% by weight of metallic element impurities including the boron, not more than 1.0% by weight of free carbon, a total of not more than 0.15% by weight of non-metal impurities other than the free carbon, and the balance essentially consisting of silicon carbide, and having a density of not less 3.10 g/cm.sup.3. The sintered body is manufactured by heating a molding of a mixture containing a silicon carbide powder, a boron-containing sintering assistant, and a carbon-containing oxygen scavenger to a sintering temperature. The molded body is maintained at a temperature lower than the sintering temperature during the heating process until an oxide film covering the silicon carbide powder is substantially removed by the oxygen scavenger, and the molded body is then sintered at the sintering temperature under a non-pressurized condition.
摘要翻译:含有不少于0.03重量%的硼,总计不超过0.3重量%的包含硼的金属元素杂质,不超过1.0重量%游离碳的碳化硅烧结体,总计不超过 超过0.15重量%的除游离碳以外的非金属杂质,余量基本上由碳化硅组成,密度不小于3.10g / cm 3。 通过将含有碳化硅粉末,含硼烧结助剂和含碳氧清除剂的混合物的成型加热至烧结温度来制造烧结体。 成型体在加热过程中保持在低于烧结温度的温度,直到氧清除剂基本上除去覆盖碳化硅粉末的氧化膜,然后在未加压的烧结温度下将成型体烧结 条件。
摘要:
A method of producing ceramic articles having a density substantially equal to the theoretical density comprises heating a highly porous preliminary molding made of a ceramic powder to obtain a preliminarily sintered molding of a porosity below 30%, followed by sintering the preliminarily sintered molding under a uniform pressure by the use of a powder acting as a pressure transmitting medium. This method permits producing a ceramic article having a desired shape, and no deformation in it.
摘要:
A method for producing powder of .alpha.-silicon nitride which comprises the steps of:adding 0.3 to 2 parts by weight of powder of carbon and 0.005 to 1 paret by weight of at least one silicon compound selected from the group consisting of Si.sub.3 N.sub.4, SiC and silicon oxide nitride series compounds to one part by weight (as converted to SiO.sub.2) to a liquid silane derivative which produces a precipitate and HCl by hydrolysis and further causes SiO.sub.2 to be grown by the baking of said precipitate, or the precipitate produced by hydrolysis of the liquid silane derivatives;hydrolyzing the resultant mixture, if necessary;washing the mixture to separate a solid component, if necessary; andbaking the solid component for reduction and nitrogenization at a temperature of 1300.degree. to 1500.degree. C. in an atmosphere mainly consisting of a nitrogen gas or a gas of a nitrogen compound.