摘要:
The solid-state image-sensor in the present invention is made by stacking a flattened transparent insulating film 2 made out of material such as boron phosphate silicate glass (BPSG), a convex-topped high refractive index (n>1.8) in-layer lens 3, a color filter layer 5 made out of a color resist containing a dye or pigment, a transparent film 6 made out of an acrylic transparent resin, and a micro-lens (also known as a top lens) 7, on top of a photodiode 1 formed on a silicon semiconductor substrate 10, where the color filter layer 5 is directly applied on the in-layer lens 3.
摘要:
A solid-state imaging device including: a plurality of photodiode parts (1); a plurality of vertical charge transfer parts (2) each of which reads out a signal charge and transfers the signal charge in a vertical direction; and a plurality of shade films (5) that have conductivity, which supplies a transfer pulse via the shade film (5), is used. The vertical charge transfer parts (2) respectively have transfer channels (13) and transfer electrodes (3). The shade film (5) is formed above the corresponding vertical charge transfer part (2) via an insulation layer (21) that insulates the shade film (5) from the transfer electrodes (3). The insulation layer (21) has a thick part (8) in a part of the insulation layer (21) where the shade film (5) is overlapped on a side of the photodiode part (1) that is a subject to be read out by the vertical charge transfer part (2).
摘要:
A solid-state imaging device including: a plurality of photodiode parts (1); a plurality of vertical charge transfer parts (2) each of which reads out a signal charge and transfers the signal charge in a vertical direction; and a plurality of shade films (5) that have conductivity, which supplies a transfer pulse via the shade film (5), is used. The vertical charge transfer parts (2) respectively have transfer channels (13) and transfer electrodes (3). The shade film (5) is formed above the corresponding vertical charge transfer part (2) via an insulation layer (21) that insulates the shade film (5) from the transfer electrodes (3). The insulation layer (21) has a thick part (8) in a part of the insulation layer (21) where the shade film (5) is overlapped on a side of the photodiode part (1) that is a subject to be read out by the vertical charge transfer part (2).
摘要:
In a lens array, a multiplicity of condenser lenses, each in a convex lens form, are arrayed in vertical and horizontal directions so as to correspond to pixel regions, respectively, and each condenser lens, when viewed from a direction perpendicular to a condenser lens-arrayed plane, takes a planar shape formed with a four straight sides along four sides of the pixel region and four circular arcs extending between the respective straight sides. A center of the four circular arcs substantially coincides with a center of the corresponding pixel region. This ensures an increase in area covered with the condenser lens in the pixel region, thereby causing more light rays to enter the condenser lens. In addition, a radius of curvature necessary for collecting can be obtained more easily. Consequently, light rays can be efficiently collected and guided to light receiving sections or the like provided in the pixel regions. Accordingly, sensitivity is improved when such a lens array is used in a solid-state imaging element, while luminance of a screen is improved when it is used in a panel display element. Besides, such a lens array is easily manufactured.
摘要:
A method of discharging paper by forcibly urging the paper in a concave shape in which a printed surface is rendered concave as viewed in a discharging direction and an ink jet printer including a pair of supporting portions for supporting both side portions of the paper which has been discharged after being printed on an upper surface thereof, and a pushing-down portion for pushing down a central portion of the paper.
摘要:
The invention provides a solid state imaging device with high photosensitivity. A lens resin coated on the surface of the device is subjected to an exposing treatment using lens masks and a developing treatment, thereby forming lens patterns. After improving the light transmittance of the lens patterns through irradiation of UV, the lens patterns are heated so as to form micro lenses each in the shape of a hemisphere. At this point, the heating temperature is set at a temperature lower than a temperature at which the lens patterns are completely melted. As a result, the lens patterns are prevented from flowing out, and a distance between the adjacent micro lenses becomes equal to a distance between the adjacent lens patterns. Accordingly, by making small the distance between the adjacent lens patterns, the light receiving area of each micro lens can be enlarged.
摘要:
In a printer, a bottom of an automatic paper feeder is formed by a bottom itself of a printer case; an operation lever is provided for operating a hopper and separation pawls arranged in a stacker section; a spring member is used as a changeover mechanism for a paper feed-in roller; an ink shielding portion is provided over an entire print area; the paper is discharged while forcibly urging the paper in a concave shape in which its printed surface is concaved; and a changeover is effected between a paper feeding operation and a pumping operation by a carriage at both ends of a carriage-moving area.
摘要:
The invention provides a solid state imaging device with high photosensitivity. A lens resin coated on the surface of the device is subjected to an exposing treatment using lens masks and a developing treatment, thereby forming lens patterns. After improving the light transmittance of the lens patterns through irradiation of UV, the lens patterns are heated so as to form micro lenses each in the shape of a hemisphere. At this point, the heating temperature is set at a temperature lower than a temperature at which the lens patterns are completely melted. As a result, the lens patterns are prevented from flowing out, and a distance between the adjacent micro lenses becomes equal to a distance between the adjacent lens patterns. Accordingly, by making small the distance between the adjacent lens patterns, the light receiving area of each micro lens can be enlarged.