Abstract:
An imaging system includes a lighting controller for independently controlling emission of illumination light to be emitted by a light source in: (i) a non-all-line exposure period, which contains a reading period in which electrical signals are sequentially read out on a horizontal-line basis from an image sensor for one frame or one field period, and in which at least one horizontal line of the horizontal lines for the one frame or the one field period is not exposed to light, and (ii) in an all-line exposure period, in which all of the horizontal lines for the one frame or the one field period are exposed to light.
Abstract:
A light source device includes a primary light source that emits primary light, a light guide that guides the primary light, an optical conversion unit that converts the primary light emitted from the light guide and having a first light distribution angle into secondary light having a second light distribution angle and emits the secondary light, and a light distribution adjustment unit that adjusts the secondary light to illumination light having a third light distribution angle and emits the illumination light. The light distribution adjustment unit and the optical conversion unit slide each other. The light distribution adjustment unit allows a light distribution adjustment amount for adjusting the second light distribution angle of the secondary light to adjust to the third light distribution angle of the illumination light.
Abstract:
A light source system includes an intermediary adapter which mechanically connects a first light source module, a first irradiation module, a second light source module and a second irradiation module, a first connection mechanism which connects the first light source module and the intermediary adapter and a second connection mechanism which connects the second light source module and the intermediary adapter. The first irradiation module and the second irradiation module are interchangeably connected to the intermediary adapter in the same plane of the intermediary adapter.
Abstract:
An endoscope illumination apparatus includes a light convertor including first and second light conversion members that receive primary light emitted from a primary light source and convert at least one of the optical properties of the primary light, a detector that receives at least part of first light conversion light converted by the first light conversion member as detection light, and outputs a detection signal corresponding to a quantity of the detection light, and an operation estimation circuit that estimates, based on an amount of change in the detection signal output from the detector, whether any one of the first and second light conversion members is in an abnormal operation or both of the first and second light conversion members are in an abnormal operation.
Abstract:
An imaging system includes an illumination portion, an imager, a reader, and an illumination controller configured to control an intensity of illumination light based on modulated illumination in a non-reading period. The modulated illumination has a first integrated light amount as a product of a variable intensity of a first pulse and an output period of the illumination light and a second integrated light amount as a product of a constant intensity of a second pulse and the output period. In the non-reading period, the illumination controller causes a predetermined light amount that is not larger than a maximum value of the first integrated light amount and is not smaller than a minimum value of the second integrated light amount to transit between the first integrated light amount and the second integrated light amount.
Abstract:
A light source device includes a light conversion unit, a heat radiation unit, and a heat storage unit. The light conversion unit emits illumination light. The heat radiation unit radiates heat generated in the light conversion unit. The heat storage unit is thermally connected to the light conversion unit or the heat radiation unit, and stores the heat.
Abstract:
A light source device includes a light source unit including a primary light source, an illumination unit including a light converting member which converts primary light emitted from the primary light source to secondary light and emits the secondary light to the outside, and a connection portion which removably connects the light source unit and the illumination unit. The connection portion includes multiple ports configured to transfer and receive energy between the light source unit and the illumination unit. The multiple ports are grouped into multiple first hierarchical port groups by physical properties of the energy to be transferred and received by the ports.
Abstract:
A light source unit includes a primary light source configured to emit primary light, and a connection portion provided on an optical path of the primary light and to and from which an optical conversion unit is attachable and removable, the optical conversion unit including an optical conversion element configured to convert optical properties of the primary light to generate secondary light.
Abstract:
A primary optical unit and a photodetector unit are arranged on a side of a optical branching unit, on which primary terminals are arranged, and a lightconversion unit, which receives primary light, converts the primary light into secondary light, and emits the secondary light, is arranged on a side of the optical branching unit, on which secondary terminals are arranged, to enable guiding of the primary light from the primary optical unit to the lightconversion unit and guiding of the secondary light from the lightconversion unit to the photodetector unit through optical fibers.
Abstract:
A light source device includes a semiconductor light source that radiates light at a light quantity according to an applied current, a circuit that determines a current instruction value based on control information, first and second drive units, each of the units that is connected to the semiconductor light source and the circuit, and is capable of outputting, to the semiconductor light source, a current having magnitude corresponding to the current instruction value. The control information is set based on brightness of an image captured by an imaging element. When one of the first and second drive units is switched to the other, the circuit causes the other to start the current output after an elapse of a predetermined stop time period having a length at a predetermined ratio or less to a frame rate on the imaging element since a stop of the current output from the one.