Abstract:
An imaging system includes: an optical system configured to form a subject image; a driver configured to drive the optical system; an imaging element configured to capture the subject image and generate image data; and a processor configured to control the imaging element and the driver. The imaging element includes: a first imaging portion configured to capture an image of a first light beam that travels through a first optical path in the optical system; a second imaging portion configured to capture an image of a second light beam that travels through a second optical path shorter than the first optical path; and plural phase difference pixels for phase difference autofocus, the plural phase difference pixels being arranged in at least one of the first imaging portion and the second imaging portion, the plural phase difference pixels being configured to output phase difference signals.
Abstract:
A solid-state image pickup apparatus including: two-dimensionally arrayed unit pixels, each including a PD performing optical-electrical conversion of an incident light; an FD and two output terminals provided for each of pixel groups, each including one or more unit pixels, the two output terminals being capable of outputting a noise signal and a signal-noise sum signal separately; first and second transfer lines to which the output terminals are connected in common and which are capable of holding noise signal voltage and signal-noise sum signal voltage, respectively; first switches arranged between the output terminals and the first transfer lines; second switches arranged between the output terminals and the second transfer lines; third and fourth switches provided for the transfer lines, respectively; and third and fourth transfer lines to which the transfer lines are connected in parallel via third and fourth switches, respectively.
Abstract:
An imaging element includes: a pixel board including a light receiver including plural pixels, each pixel being configured to generate an imaging signal; a circuit board including a functional circuit, the pixel board being layered on the circuit board; plural wiring portions configured to electrically connect the pixel board and the circuit board to each other and electrically transmit signals between respective layers; a terminal provided on the circuit board, the terminal being electrically connected to each of the plural wiring portions, the terminal being configured to output the imaging signal to an outside of the terminal or receive an external signal from the outside of the terminal; and a switch configured to output, by selective switching, at least one of the imaging signal and an internal signal generated at the circuit board, to the terminal.
Abstract:
An image sensor includes: pixels; first transfer lines configured to transfer imaging signals of shared pixels that are present in a plurality of different rows and share a single column transfer line for each predetermined number of pixels adjacent in a row direction and; a constant current source configured to transfer the imaging signals; output units configured to externally output the imaging signals; and a control unit configured to simultaneously and externally outputs, by simultaneously driving the plurality of shared pixels present in a same single column transfer line in the plurality of different rows, each of the plurality of imaging signals, which are output from the shared pixels and are present in the same column in the plurality of different rows, and externally output all of the imaging signals of the shared pixels present in the plurality of different rows same number of times as the predetermined number.
Abstract:
A control device includes: a processor configured to obtain a first picture signal and a second picture signal, calculate first ranging information based on the first picture signal, calculate second ranging information based on the second picture signal, estimate a first subject distance corresponding to the first ranging information, estimate ranging information corresponding to a second focal position, perform arithmetic processing to determine degree of reliability of the first ranging information, and output a result of the arithmetic processing.
Abstract:
A control device includes: a processor configured to obtain a first picture signal and a second picture signal, calculate first ranging information based on the first picture signal, calculate second ranging information based on the second picture signal, estimate a first subject distance corresponding to the first ranging information, estimate ranging information corresponding to a second focal position, perform arithmetic processing to determine degree of reliability of the first ranging information, and output a result of the arithmetic processing.
Abstract:
An imaging element includes: a plurality of pixels configured to receive light from outside and generate and output an imaging signal depending on an amount of the light received; a first transfer line connected to the pixel; a second transfer line; a column selection switch configured to select one pixel column and output the imaging signal to the second transfer line; a column source follower including a gate to which the imaging signal transferred by the first transfer line is input, a drain end being connected to a power supply voltage, and a source end being connected to the column selection switch; a constant current source configured to drive the column source follower and read out the imaging signal to the second transfer line; and a current generating unit configured to flow a predetermined current to the source end side of the column source follower.
Abstract:
An imaging element includes: a plurality of pixels; first vertical transfer lines; a second vertical transfer line; a reference voltage generator configured to generate a first reference voltage for a column-black reference signal, a second reference voltage for a line-black reference signal and a third reference voltage for phase adjustment; a phase adjusting signal generator configured to output a phase adjusting signal corresponding to the third reference voltage; a first reference signal generator configured to generate a column-black reference signal corresponding to the first reference voltage; a second reference signal generator configured to generate a line-black reference signal corresponding to the second reference voltage; and a timing generator configured to drive the phase adjusting signal generator, the first reference signal generator and the second reference signal generator to transmit the phase adjusting signal, the column-black reference signal and the line-black reference signal, respectively.
Abstract:
An imaging element includes: a pixel chip where a pixel unit and a vertical selecting unit are arranged, the pixel unit including plural pixels that are arranged in a two-dimensional matrix, the pixels being configured to generate and output imaging signals; a transmission chip where at least a power source unit and a transmission unit are arranged; plural capacitative chips, each capacitative chip having capacitance functioning as a bypass condenser for a power source in the power source unit; and plural connecting portions configured to electrically connect the pixel chip, the transmission chip, and the capacitative chip respectively to another chip. The transmission chip is layered and connected at a back surface side of the pixel chip. The capacitative chips are layered and connected at a back surface side of the transmission chip. The connecting portions are arranged so as to overlap one another.
Abstract:
An imaging device includes: a first chip including a light receiving unit, and a read circuit; a second chip including a timing control circuit, an A/D conversion circuit, and a cable transmission circuit; and a connection unit configured to connect the first and the second chips. The read circuit includes a column read circuit and a horizontal selection circuit, and a vertical selection circuit. The connection unit of the first chip is provided in a first area along a side of the rectangular light receiving unit, and in a second area adjacent to the column read circuit, the horizontal selection circuit, and the vertical selection circuit. The connection unit of the second chip is provided in a third area around the timing control circuit, the A/D conversion circuit, and the cable transmission circuit and in a fourth area adjacent to the timing control circuit and the A/D conversion circuit.