Abstract:
The present invention is to provide a cell chip and a three-dimensional tissue chip and a production method therefor such that even when a highly viscous cell-containing solution is a material, the highly safe and reproducible cell chip or three-dimensional tissue chip with a desired application volume can be produced within a short time and in a large quantity so as to have a desired cell density and exhibit high cell viability.
Abstract:
The present invention is to improve dynamic characteristics while maintaining temperature responsiveness in a cell culture support containing hydroxyalkyl chitosan, and to provide a cell culture support having temperature responsiveness, which contains temperature-responsive hydroxyalkyl chitosan and a water-soluble polymer selected from polyethylene glycol, derivatives thereof, hyaluronic acids, alginic acids and salts thereof.
Abstract:
Provided are an elastic three-dimensional tissue and a method by which the tissue can be produced. The elastic three-dimensional tissue includes smooth muscle cells and an extracellular matrix component, with the smooth muscle cells being layered with the extracellular matrix component interposed therebetween. Furthermore, the production method for a three-dimensional tissue includes layering smooth muscle cells with an extracellular matrix component interposed therebetween, wherein the smooth muscle cells are those directed towards a differentiated type from an undifferentiated type.
Abstract:
The present invention is to provide a material that is capable of selectively adsorbing organic fluoro-compounds such as perfluorooctane sulfonic acid, allows the adsorbed organic fluoro-compounds to be recovered, and is reusable as an adsorbent, specifically to provide a polymer in which cyclodextrin is supported on the surface of a water-insoluble polymer, and an adsorbent containing the same, and a method of use of the same as a selective adsorbent of, in particular, an organic fluoro-compound.
Abstract:
An artificial tissue containing pancreatic islet cells, fibroblasts and/or cells capable of differentiating, extracellular matrix, and vascular endothelial cells, in which the fibroblasts and/or the cells capable of differentiating, the extracellular matrix, and the vascular endothelial cells constitute a three-dimensional tissue structure in which a vascular network structure has been formed, and in which the three-dimensional tissue structure contains pancreatic islets constituted by aggregating ten or more of the pancreatic islet cells.
Abstract:
Provided is a novel method capable of manufacturing an artificial skin model including dendritic cells. A method for manufacturing an artificial skin model includes the following: forming a dermal tissue layer by culturing coated cells in which a cell surface is coated with a coating film containing an extracellular matrix component, so that the coated cells are layered; forming a basal layer including type IV collagen on the dermal tissue layer by bringing type IV collagen into contact with the dermal tissue layer; and forming an epidermal layer by arranging epidermal cells on the basal layer. At least one of the dermal tissue layer and the epidermal layer includes dendritic cells.
Abstract:
Provided is a novel method for producing a three-dimensional cell culture construct. A method for producing a three-dimensional cell culture construct including at least two or more laminated cell layers includes the following: seeding coated cells in which a cell surface is coated with a coating film containing an extracellular matrix component; culturing the seeded coated cells in a culture medium; and using at least a portion of the culture medium continuously for 5 days or more. A method for producing a three-dimensional cell culture construct including at least two or more laminated cell layers includes the following: seeding coated cells in which a cell surface is coated with a coating film containing an extracellular matrix component; and culturing the seeded coated cells in a culture medium. The culture process of the coated cells includes culturing the coated cells in 70 μL or more of the culture medium per 1×104 cells.